Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T19:06:43.866Z Has data issue: false hasContentIssue false

Temperature and irradiation species dependence of radiation response of nanocrystalline silicon carbide

Published online by Cambridge University Press:  09 December 2014

Laura Jamison
Affiliation:
Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
Kumar Sridharan
Affiliation:
Engineering Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; and Materials Science and Engineering Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
Steve Shannon
Affiliation:
Nuclear Engineering Department, North Carolina State University, Raleigh, North Carolina 27695, USA
Izabela Szlufarska*
Affiliation:
Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Materials Science and Engineering Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; and Engineering Physics Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
*
a)Address all correspondence to this author. e-mail: szlufarska@wisc.edu
Get access

Abstract

The grain size dependence of the radiation response of silicon carbide (SiC) has been studied under 1.0 MeV Kr2+ ion irradiation. It was found that radiation resistance decreased with grain refinement, in contrast to previous studies on the same nanocrystalline (nc) SiC material using Si ion and high voltage electron irradiation. The effect of grain size on radiation response may depend upon the ion species used due to a potential change in amorphization mechanism. It was also determined that temperature had a strong effect on the grain size dependence of the radiation response in SiC due to the activation temperatures of critical recombination and migration reactions. This work explores the possible impacts of irradiation species, temperature, and experimental design on the radiation response of SiC.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Katoh, Y., Snead, L.L., Szlufarska, I., and Weber, W.J.: Radiation effects in SiC for nuclear structural applications. Curr. Opin. Solid State Mater. Sci. 16(3), 143 (2012).CrossRefGoogle Scholar
Ford, L.H., Hibbert, N.S., and Martin, D.G.: Recent developments of coatings for GCFR and HTGCR fuel particles and their performance. J. Nucl. Mater. 45(2), 139 (1972).CrossRefGoogle Scholar
Zinkle, S.J. and Busby, J.T.: Structural materials for fission & fusion energy. Mater. Today 12(11), 12 (2009).CrossRefGoogle Scholar
Verrall, R.A., Vlajic, M.D., and Krstic, V.D.: Silicon carbide as an inert-matrix for a thermal reactor fuel. J. Nucl. Mater. 274(1–2), 54 (1999).CrossRefGoogle Scholar
Rose, M., Balogh, A.G., and Hahn, H.: Instability of irradiation induced defects in nanostructured materials. Nucl. Instrum. Methods Phys. Res., Sect. B 127128, 119 (1997).CrossRefGoogle Scholar
Nita, N., Schaeublin, R., and Victoria, M.: Impact of irradiation on the microstructure of nanocrystalline materials. J. Nucl. Mater. 329333, Part B, 953 (2004).CrossRefGoogle Scholar
Radiguet, B., Etienne, A., Pareige, P., Sauvage, X., and Valiev, R.: Irradiation behavior of nanostructured 316 austenitic stainless steel. J. Mater. Sci. 43(23–24), 7338 (2008).CrossRefGoogle Scholar
Kilmametov, A.R., Gunderov, D.V., Valiev, R.Z., Balogh, A.G., and Hahn, H.: Enhanced ion irradiation resistance of bulk nanocrystalline TiNi alloy. Scr. Mater. 59(10), 1027 (2008).CrossRefGoogle Scholar
Birtcher, R.C. and Wang, L.M.: Microstructural changes induced in Zr3Al and U3Si during irradiation of the crystalline state. Nucl. Instrum. Methods Phys. Res., Sect. B 5960, Part 2, 966 (1991).CrossRefGoogle Scholar
Shen, T.D., Feng, S., Tang, M., Valdez, J.A., Wang, Y., and Sickafus, K.E.: Enhanced radiation tolerance in nanocrystalline MgGa2O4 . Appl. Phys. Lett. 90(26), 263115 (2007).CrossRefGoogle Scholar
Zhang, Y., Ishimaru, M., Varga, T., Oda, T., Hardiman, C., Xue, H., Katoh, Y., Shannon, S., and Weber, W.J.: Nanoscale engineering of radiation tolerant silicon carbide. Phys. Chem. Chem. Phys. 14, 13429 (2012).CrossRefGoogle ScholarPubMed
Jamison, L., Zheng, M-J., Shannon, S., Allen, T., Morgan, D., and Szlufarska, I.: Experimental and ab initio study of enhanced resistance to amorphization of nanocrystalline silicon carbide under electron irradiation. J. Nucl. Mater. 445(1–3), 181 (2014).CrossRefGoogle Scholar
Jiang, W., Wang, H., Kim, I., Zhang, Y., and Weber, W.J.: Amorphization of nanocrystalline 3C–SiC irradiated with Si+ ions. J. Mater. Res. 25(12), 2341 (2010).CrossRefGoogle Scholar
Jamison, L., Xu, P., Sridharan, K., and Allen, T.: Radiation resistance of nanocrystalline silicon carbide. In Advances in Materials Science for Environmental and Nuclear Technology II - Materials Science and Technology 2010 Conference and Exhibition, MS and T'10, Vol. 227, American Ceramic Society, 2011; pp. 161.Google Scholar
Jiang, W., Wang, H., Kim, I., Bae, I.T., Li, G., Nachimuthu, P., Zhu, Z., Zhang, Y., and Weber, W.J.: Response of nanocrystalline 3C silicon carbide to heavy-ion irradiation. Phys. Rev. B 80(16), 161301 (2009).CrossRefGoogle Scholar
Jiang, W., Jiao, L., and Wang, H.: Transition from irradiation-induced amorphization to crystallization in nanocrystalline silicon carbide. J. Am. Ceram. Soc. 94(12), 4127 (2011).CrossRefGoogle Scholar
Jiang, C., Swaminathan, N., Morgan, D., and Szlufarska, I.: Effect of grain boundary stresses on sink strength. Mater. Res. Lett. 2(2), 100 (2014).CrossRefGoogle Scholar
Ishimaru, M., Zhang, Y., Shannon, S., and Weber, W.J.: Origin of radiation tolerance in 3C–SiC with nanolayered planar defects. Appl. Phys. Lett. 103, 033104 (2013).CrossRefGoogle Scholar
Swaminathan, N., Kamenski, P.J., Morgan, D., and Szlufarska, I.: Effects of grain size and grain boundaries on defect production in nanocrystalline 3C–SiC. Acta Mater. 58(8), 2843 (2010).CrossRefGoogle Scholar
Petti, D.A., Buongiorno, J., Maki, J.T., Hobbins, R.R., and Miller, G.K.: Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance. Nucl. Eng. Des. 222(2–3), 281 (2003).CrossRefGoogle Scholar
Snead, L.L., Nozawa, T., Katoh, Y., Byun, T-S., Kondo, S., and Petti, D.A.: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371(1–3), 329 (2007).CrossRefGoogle Scholar
Inui, H., Mori, H., and Fujita, H.: Electron-irradiation-induced crystalline to amorphous transition in alpha-SiC single crystals. Philos. Mag. B 61(1), 107 (1990).CrossRefGoogle Scholar
Inui, H., Mori, H., Suzuki, A., and Fujita, H.: Electron-irradiation-induced crystalline-to-amorphous transition in beta-SiC single crystals. Philos. Mag. B 65(1), 1 (1992).CrossRefGoogle Scholar
Weber, W.J., Gao, F., Devanathan, R., Jiang, W., and Wang, C.M.: Ion-beam induced defects and nanoscale amorphous clusters in silicon carbide. Nucl. Instrum. Methods Phys. Res., Sect. B 216, 25 (2004).CrossRefGoogle Scholar
Devanathan, R. and Weber, W.J.: Displacement energy surface in 3C and 6H SiC. J. Nucl. Mater. 278(2–3), 258 (2000).CrossRefGoogle Scholar
Weber, W.J.: Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 98 (2000).CrossRefGoogle Scholar
Bolse, W.: Formation and development of disordered networks in Si-based ceramics under ion bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B 141(1–4), 133 (1998).CrossRefGoogle Scholar
Weber, W.J., Wang, L.M., and Yu, N.: The irradiation-induced crystalline-to-amorphous phase transition in α-SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 116(1–4), 322 (1996).CrossRefGoogle Scholar
Wang, X., Jamison, L., Shannon, S., Sridharan, K., Morgan, D., and Szlufarska, I.: (2014, in preparation).Google Scholar
Wendler, E., Heft, A., and Wesch, W.: Ion-beam induced damage and annealing behaviour in SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 141(1–4), 105 (1998).CrossRefGoogle Scholar
Swaminathan, N., Morgan, D., and Szlufarska, I.: Role of recombination kinetics and grain size in radiation-induced amorphization. Phys. Rev. B 86(21), 214110 (2012).CrossRefGoogle Scholar
Kachurin, G.A., Ruault, M.O., Gutakovsky, A.K., Kaı̈tasov, O., Yanovskaya, S.G., Zhuravlev, K.S., and Bernas, H.: Light particle irradiation effects in Si nanocrystals. Nucl. Instrum. Methods Phys. Res., Sect. B 147(1–4), 356 (1999).CrossRefGoogle Scholar
Johannessen, B., Kluth, P., Llewellyn, D.J., Foran, G.J., Cookson, D.J., and Ridgway, M.C.: Amorphization of embedded Cu nanocrystals by ion irradiation. Appl. Phys. Lett. 90(7), 073119 (2007).CrossRefGoogle Scholar
Was, G.S.: Fundamentals of Radiation Materials Science (Springer, Berlin Heidelberg, Germany, 2007).Google Scholar
Supplementary material: File

Jamison et al. supplementary material

Supplementary figure

Download Jamison et al. supplementary material(File)
File 100.9 KB