Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Tian, Y.
Wei, R.
Eichhorn, V.
Fatikow, S.
Shirinzadeh, B.
and
Zhang, D.
2012.
Mechanical properties of boron nitride nanocones.
Journal of Applied Physics,
Vol. 111,
Issue. 10,
Liao, Ming-Liang
2012.
A study on hydrogen adsorption behaviors of open-tip carbon nanocones.
Journal of Nanoparticle Research,
Vol. 14,
Issue. 4,
Liao, Ming-Liang
2014.
Buckling behaviors of open-tip carbon nanocones at elevated temperatures.
Applied Physics A,
Vol. 117,
Issue. 3,
p.
1109.
Liao, Ming Liang
2014.
Thermal Stability of an Axial-Compressed Open-Tip Carbon Nanocone.
Applied Mechanics and Materials,
Vol. 575,
Issue. ,
p.
227.
Liao, Ming-Liang
2015.
Influences of vacancy defects on buckling behaviors of open-tip carbon nanocones.
Journal of Materials Research,
Vol. 30,
Issue. 7,
p.
896.
Ansari, R.
Rouhi, S.
and
Momen, A.
2015.
Predicting mechanical properties and buckling behavior of single-walled silicon carbide nanocones using a finite element method.
Applied Physics A,
Vol. 119,
Issue. 3,
p.
1039.
Rasouli Gandomani, M.
Noorian, M.A.
Haddadpour, H.
and
Fotouhi, M.M.
2016.
Dynamic stability analysis of single walled carbon nanocone conveying fluid.
Computational Materials Science,
Vol. 113,
Issue. ,
p.
123.
Wang, Xiangyang
Wang, Jinbao
and
Guo, Xu
2016.
Finite deformation of single-walled carbon nanocones under axial compression using a temperature-related multiscale quasi-continuum model.
Computational Materials Science,
Vol. 114,
Issue. ,
p.
244.
Wang, Xiangyang
Qi, Huibo
Sun, Zhongyu
Wang, Xiaojing
Song, Xiushu
Wang, Jinbao
and
Guo, Xu
2017.
Quasi-continuum study of the buckling behavior of single-walled carbon nanocones subjected to bending under thermal loading.
Journal of Materials Research,
Vol. 32,
Issue. 12,
p.
2266.
Liao, Ming-Liang
2017.
Buckling behaviors of cantilevered open-tip carbon nanocones subjected to transverse loading: A molecular dynamics study.
Physica B: Condensed Matter,
Vol. 525,
Issue. ,
p.
84.
Wang, Xiaojing
Wang, Xiangyang
Qi, Huibo
Song, Xiushu
and
Li, Runze
2017.
A study on elastic properties of carbon nanocones based on a temperature-related quasi-continuum model.
Fullerenes, Nanotubes and Carbon Nanostructures,
Vol. 25,
Issue. 8,
p.
466.
Rouhi, S.
Ansari, R.
and
Nickabadi, S.
2017.
Modal analysis of double-walled carbon nanocones using the finite element method.
International Journal of Modern Physics B,
Vol. 31,
Issue. 32,
p.
1750262.
Liao, Ming-Liang
2017.
Influences of vacancy defects on tensile failure of open-tip carbon nanocones.
AIMS Materials Science,
Vol. 4,
Issue. 1,
p.
178.
Narjabadifam, Ali
Vakili-Tahami, Farid
and
Zehsaz, Mohammad
2018.
Elastic and failure properties of carbon nanocones using molecular dynamics simulation.
Fullerenes, Nanotubes and Carbon Nanostructures,
Vol. 26,
Issue. 11,
p.
777.
Ardeshana, Bhavik A.
Jani, Umang B.
Patel, Ajay M.
and
Joshi, Anand Y.
2018.
Characterizing the vibration behavior of double walled carbon nano cones for sensing applications.
Materials Technology,
Vol. 33,
Issue. 7,
p.
451.
Raj, Arindam
Mokhalingam, Aningi
and
Gupta, Shakti S.
2018.
Instabilities in carbon nanocone stacks.
Carbon,
Vol. 127,
Issue. ,
p.
404.
Mokhalingam, Aningi
Ghaffari, Reza
Sauer, Roger A.
and
Gupta, Shakti S.
2020.
Comparing quantum, molecular and continuum models for graphene at large deformations.
Carbon,
Vol. 159,
Issue. ,
p.
478.
Taheri, Seyed Saeid
and
Seyyed Fakhrabadi, Mir Masoud
2021.
Molecular dynamics simulation of transversely isotropic elastic properties of carbon nanocones.
Physica Scripta,
Vol. 96,
Issue. 3,
p.
035702.
Reguieg Yssaad, Abdellah
Krour, Baghdad
Benatta, Mohamed Atif
Bachir Bouiadjra, Mohamed
and
Bouremana, Mohammed
2023.
Investigation of the elastic constants of perfect and imperfect carbon nanocones using an adequate nonlinear atomic finite element model.
Journal of Molecular Graphics and Modelling,
Vol. 118,
Issue. ,
p.
108322.
Xu, Futian
Zhan, Haifei
Gu, Yuantong
Duan, Shuyong
and
Li, Zirui
2024.
Torsional properties of spiral carbon nanocones.
Thin-Walled Structures,
Vol. 205,
Issue. ,
p.
112350.