Published online by Cambridge University Press: 03 March 2011
Thin In2O3:Sn (ITO) films prepared by radio-frequency (rf) or direct-current (dc) magnetron-sputtering and in central or peripheral position relative to the target were characterized by x-ray diffractograms and pole figures. The diffractograms were normalized with the powder diffraction intensities of the target. In the normalized diffractograms, a random texture level and preferred orientations can be distinguished. The pole figures are represented by normalized χ-scans that are modeled as a sum of Gaussian curves. The centers of the Gaussian curves are consistent with the prominent orientations of the normalized diffractograms. The textures of the rf-sputtered films in the central and the peripheral position are similar, showing strong contributions from (211)-planes. The texture of dc-sputtered samples is dominated by (400) and (411) planes. In the peripheral sample, the distribution of (400)- and (411)-oriented grains is shifted towards the incidence angle of the particle flux and the frequency of the (222)-grains is suppressed below the random texture level. The results are discussed with reference to a model of incorporation of interstitial oxygen into the growing films.