Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T01:27:55.701Z Has data issue: false hasContentIssue false

Texture evolution of SnO2 synthesized by pyrolysis of an aerosol

Published online by Cambridge University Press:  18 February 2016

M. Vallet-Regí
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Universidad Complutense, 28040-Madrid and Instituto de Magnetismo Aplicado, RENFE-UCM, Apdo. 155, Las Rozas 28230-Madrid, Spain
V. Ragel
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Universidad Complutense, 28040-Madrid, Spain
J. Román
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Universidad Complutense, 28040-Madrid, Spain
J. L. Martínez
Affiliation:
Departamento de Química Inorgánica y Bioinorgánica, Universidad Complutense, 28040-Madrid, Spain
M. Labeau
Affiliation:
Laboratoire des Materiaux et du Genie Physique, URA 1109 CNRS, INPG, BP46, 38402 Saint Martin d'Heres, France
J.M. González-Calbet
Affiliation:
Instituto de Magnetismo Aplicado, RENFE-UCM, Apdo. 155, Las Rozas 28230-Madrid, and Departamento de Química Inorgánica, Universidad Complutense, 28040-Madrid, Spain
Get access

Extract

SnO2 hollow spherical particles have been prepared by pyrolysis of an aerosol produced by ultrahigh frequency of a SnCl2 precursor solution. The spheres obtained were found to be amorphous when the pyrolysis temperature is <500 °C, but they crystallize to cassiterite at temperatures higher than 600 °C. The spherical shape is kept when as-received samples are annealed at temperatures ranging between 500 and 1100°CC, but they are polycrystalline, the crystallite size being controlled as a function of the annealing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tofleld, B. C., Solid State Gas Sensors (Adam Hilger, Bristol, 1987).Google Scholar
2. Kohl, D., Sensors and Actuators 18, 71 (1989).Google Scholar
3. Xu, C., Tamaki, J., Miura, N., and Yamazoe, N., Sensors and Actuators B3, 147 (1991).Google Scholar
4. Deschanvres, J. L., Cellier, F., Delabouglise, G., Labeau, M., Langlet, M., and Joubert, J. C., Physique, J. 50, C5695 (1989).Google Scholar
5. Vallet-Regí, M. , Labeau, M., García, E., , Gonzélez-Calbet, J.M., and Delabouglise, G., Physica C 180, 57 (1991).Google Scholar
6. X-ray Powder Data File, ASTM 6-395.Google Scholar
7. X-ray Powder Data File, ASTM 21-1250.Google Scholar
8. Duvál, C., Inorganic Thermogravimetric Analysis (Elsevier Publishing Company, New York, 1963), 2nd ed., p. 510.Google Scholar