Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T09:44:08.519Z Has data issue: false hasContentIssue false

Theoretical investigation of possible low-lying electronic excitations in YBa2Cu3O7−x

Published online by Cambridge University Press:  31 January 2011

L. A. Curtiss
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4837
S. W. Tam
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439-4837
Get access

Abstract

Ab initio molecular orbital calculations of oxygen 2p hole states of small CuO clusters representing the chains and planes in YBa2Cu3O7−x are reported. The results suggest that the absorption observed at 0.37 eV in reflectivity studies of YBa2Cu3O7−x may be due to excitation of these holes between inequivalent oxygen sites.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kamaras, K., Porter, C. D., Doss, M. G., Herr, S. L., Tanner, D. B., Bonn, D. A., Greedan, J. E., Reilly, A. H., Stager, C. V., and Timusk, T., Phys. Rev. Lett. 59, 919 (1987).Google Scholar
2Bozovic, I., Kirillov, D., Kapitulnik, A., Char, K., Hahn, M. R., Beasley, M. R., Geballe, T. H., Kim, Y. H., and Heeger, A. J., Phys. Rev. Lett. 59, 2219 (1987).CrossRefGoogle Scholar
3Little, W. A., Collman, J. P., Yee, G. T., Holcomb, M. J., McDevitt, J. T., and Brown, G. E., J. Am. Chem. Soc. 110, 1302 (1988).CrossRefGoogle Scholar
4Etemad, S., Aspnes, D. E., Barboux, P., Hull, G. W., Kelley, M. K., Tarascon, J. M., Thompson, R., Herr, S. L., Kamaras, K., Porter, C. D., and Porter, D. B., Mater. Res. Soc. Symp. Proc. 99, 135 (1988).Google Scholar
5Orenstein, J., Thomas, G. A., Rapkine, D. H., Bathea, C. G., Levine, B. F., Cava, R. J., Rietman, E. A., and Johnson, D. W. Jr , Phys. Rev. B 36, 729 (1987).CrossRefGoogle Scholar
6Herr, S. L., Kamaras, K., Porter, C. D., Doss, M. G., Tanner, D. B., Bonn, D. A., Greedan, J. E., Stager, C. V., and Timusk, T., Phys. Rev. B 36, 733 (1987).CrossRefGoogle Scholar
7Varma, C. M., Schmitt-Rink, S., and Abrahams, E., Solid State Commun. 63, 681 (1987).CrossRefGoogle Scholar
8Emery, V. J., Phys. Rev. Lett. 58, 2794 (1987).Google Scholar
9Hirsch, J. E., Phys. Rev. Lett. 228, 228 (1987).CrossRefGoogle Scholar
10Mattis, D. C. and Mattis, M. P., Phys. Rev. Lett. 59, 2780 (1987).CrossRefGoogle Scholar
11Adrian, F. J., Phys. Rev. B 37, 2326 (1988).CrossRefGoogle Scholar
12(a)Guo, Y., Langlois, J. M., and Goddard, W. A., Science 239, 896 (1988)CrossRefGoogle Scholar
(b) Chen, G. and Goddard, W. A., Science 239, 899 (1988).Google Scholar
13Curtiss, L. A., Brun, T., and Gruen, D., Inorg. Chem. 27, 1421 (1988).CrossRefGoogle Scholar
14Curtiss, L. A. and Shastri, A., High-Temperature Superconductivity—The First Two Years (Gordon and Breach, New York, 1988), pp. 373378.Google Scholar
15Hehre, W. J., Radom, L., Pople, J. A., and Schleyer, P. v. R., Ab Initio Molecular Orbital Theory (Wiley-Interscience, New York, 1987).Google Scholar
16The Cu basis is the (14s9p5d) primitive Gaussian basis of WachterGoogle Scholar
J. Chem. Phys. 52, 1033 (1970)] contracted to [9s3d2d] according to the method used by Jafri, Logan, and Newton [Isr. J. Chem. 19, 340 (1980)] for Fe; the O and H basis sets are [3s2p] and [2s] contractions, respectively, of Dunning [J. Chem. Phys. 53, 2823 (1970)].CrossRefGoogle Scholar
17Beno, M. A., Soderholm, L., Capone, D. W., Hinks, D. G., Jorgenson, J. D., Grace, J. D., Schuller, I. K., Segre, C. U., and Zhang, K., Appl. Phys. Lett. 51, 57 (1987).CrossRefGoogle Scholar
18The Jahn-Teller distortion in La2–x Bax CuO4 (CuOax = 2.42 Å; CuOeq = 1.89 Å) is very similar to the Jahn-Teller distortion (Ref. 19) forCu2+ in water (four H2O molecules at 1.94 Å and two at 2.43 Å). Ab initio calculations that we have carried out on [Cu(OH2)6]2+ using a minimal basis set gives a CuOax distance of 2.20 Å and a CuOeq distance of 1.98 Å. Although the CuOax distortion is not nearly as large, the potential energy surface for stretching this bond is very shallow.Google Scholar
19Magini, M., Licheri, G., Paschina, G., Piccaluga, G., and Pima, G., XRay Diffraction of Ions in Aqueous Solutions: Hydration and Complex Formation (CRC, Boca Raton, FL, 1987).Google Scholar
20(a) Geisinger, K. L., Gibbs, G. V., and Navrotsky, A., Phys. Chem. Min. 11, 266 (1985)CrossRefGoogle Scholar
(b) Biceramo, J., Keem, J. E., and Schlegel, H. B., Theoret. Chim. Acta 70, 265 (1986)CrossRefGoogle Scholar
(c) Hughbanks, T. and Hoffmann, R., J. Am. Chem. Soc. 105, 1150 (1983)Google Scholar
(d) Winter, N. W. and Pitzer, R. M., J. Chem. Phys. 89, 446 (1988).CrossRefGoogle Scholar