Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T03:45:19.677Z Has data issue: false hasContentIssue false

A theoretical model for studying the mechanical properties of bimodal nanocrystalline materials

Published online by Cambridge University Press:  20 May 2015

Yingguang Liu*
Affiliation:
Department of Power Engineering, School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, Hebei, People's Republic of China
Rongyuan Ju
Affiliation:
Department of Power Engineering, School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, Hebei, People's Republic of China
*
a)Address all correspondence to this author. e-mail: liuyingguang@ncepu.edu.cn
Get access

Abstract

A new theoretical model is proposed to describe the mechanical properties of bimodal nanocrystalline (BNC) materials. This composite model is comprised of coarse grains evenly distributed in the nanocrystalline (NC) matrix. In this study, we have studied the effect of grain size distribution on the constitutive behavior of BNC materials. During the plastic deformation, effects of nanocracks and dislocation emission from crack tips on the constitutive behavior of BNC materials are also analyzed. Numerical calculations have been carried out according to the model, and it is found that the nanocracks make a positive effect on the strain hardening, and the results show that this model can describe the enhanced strength and strain hardening of BNC materials successfully. The prediction of the bimodal Cu–Ag material is in good agreement with the experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

References

REFERENCES

Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).10.1016/j.pmatsci.2005.08.003CrossRefGoogle Scholar
Li, J.J. and Soh, A.K.: Modeling of the plastic deformation of nanostructured materials with grain size gradient. Int. J. Plast. 39, 88 (2012).10.1016/j.ijplas.2012.06.004CrossRefGoogle Scholar
Koch, C.C., Morris, D.G., Lu, K., and Inoue, A.: Ductility of nanostructured materials. MRS Bull. 24, 54 (1999).10.1557/S0883769400051551CrossRefGoogle Scholar
Kumar, K.S., Suresh, S., and Van Swygenhoven, H.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).10.1016/j.actamat.2003.08.032CrossRefGoogle Scholar
Sharon, J.A., Padilla, H.A., and Boyce, B.L.: Interpreting the ductility of nanocrystalline metals. J. Mater. Res. 28, 1539 (2013).10.1557/jmr.2013.139CrossRefGoogle Scholar
He, G., Eckert, J., Loser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2002).10.1038/nmat792CrossRefGoogle Scholar
Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystal-line metals. Acta Mater. 55, 4041 (2007).10.1016/j.actamat.2007.01.038CrossRefGoogle Scholar
Mahesh, B.V., Singh Raman, R.K., and Koch, C.C.: Bimodal grain size distribution: An effective approach for improving the mechanical and corrosion properties of Fe–Cr–Ni alloys. J. Mater. Sci. 47, 7735 (2012).CrossRefGoogle Scholar
Zhang, X., Wang, H., and Koch, C.C.: Mechanical behavior of bulk ultrafine-grained and nanocrystalline Zn. Rev. Adv. Mater. Sci. 6, 53 (2004).Google Scholar
Han, B.Q., Lavernia, E.J., and Mohamed, F.A.: Mechanical properties of nanostructured materials. Rev. Adv. Mater. Sci. 9, 1 (2005).Google Scholar
Wang, Y.M., Chen, M.W., Zhou, F.H., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).CrossRefGoogle Scholar
Dutel, G.D., Tingaud, D., Langlois, P., and Dirras, G.: Nickel with multimodal grain size distribution achieved by SPS: Microstructure and mechanical properties. J. Mater. Sci. 47, 7926 (2012).10.1007/s10853-012-6670-1CrossRefGoogle Scholar
Pozuelo, M., Melnyk, C., Kao, W.H., and Yang, J.M.: Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy. J. Mater. Res. 26, 904 (2011).10.1557/jmr.2010.94CrossRefGoogle Scholar
Vinogradov, A., Hashimoto, S., Patlan, V., and Kitagawa, K.: Atomic force microscopic study on surface morphology of ultra-fine grained materials after tensile testing. Mater. Sci. Eng., A 319, 862 (2012).Google Scholar
Fan, G.H., Choo, H., Liaw, P.K., and Lavernia, E.J.: Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution. Acta Mater. 54, 1759 (2006).10.1016/j.actamat.2005.11.044CrossRefGoogle Scholar
Han, B.Q., Huang, J.Y., Zhu, Y.T., and Lavernia, E.J.: Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys. Acta Mater. 54, 3015 (2006).10.1016/j.actamat.2006.02.045CrossRefGoogle Scholar
Magee, A., Ladani, L., Topping, T.D., and Lavernia, E.J.: Effects of tensile test parameters on the mechanical properties of a bimodal Al–Mg alloy. Acta Mater. 60, 5838 (2012).10.1016/j.actamat.2012.07.024CrossRefGoogle Scholar
Long, Y., Wang, T., Zhang, H.Y., and Huang, X.L.: Enhanced ductility in a bimodal ultrafine-grained Ti–6Al–4V alloy fabricated by high energy ball milling and spark plasma sintering. Mater. Sci. Eng., A 608, 82 (2014).10.1016/j.msea.2014.04.057CrossRefGoogle Scholar
Ovid'ko, I.A. and Sheinerman, A.G.: Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Acta Mater. 58, 5286 (2010).10.1016/j.actamat.2010.05.058CrossRefGoogle Scholar
Zhu, L.L., Shi, S.Q., Lu, K., and Lu, J.: A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution. Acta Mater. 60, 5762 (2012).10.1016/j.actamat.2012.06.059CrossRefGoogle Scholar
Zhu, L.L. and Lu, J.: Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution. Int. J. Plast. 30, 166 (2012).10.1016/j.ijplas.2011.10.003CrossRefGoogle Scholar
Liu, Y.G., Zhou, J.Q., and Hui, D.: A strain-gradient plasticity theory of bimodal nanocrystalline materials with composite structure. Compos. Part. B 43, 249 (2012).10.1016/j.compositesb.2011.11.048CrossRefGoogle Scholar
Kocks, U.F. and Mecking, H.: Physics and phenomenology of strain hardening: The FCC case. Prog. Mater. Sci. 48, 171 (2003).10.1016/S0079-6425(02)00003-8CrossRefGoogle Scholar
Capolungo, L., Jochum, C., Cherkaoui, M., and Qu, J.: Homogenization method for strength and inelastic behavior of nanocrystalline materials. Int. J. Plast. 21, 67 (2005).10.1016/j.ijplas.2004.02.002CrossRefGoogle Scholar
Liu, Y.G., Zhou, J.Q., Wang, L., Zhang, S., and Wang, Y.: Grain size dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng., A 528, 4615 (2011).10.1016/j.msea.2011.02.056CrossRefGoogle Scholar
Song, J., Curtin, W.A., Bhandakkar, T.K., and Gao, H.J.: Dislocation shielding and crack tip decohesion at the atomic scale. Acta Mater. 58, 5933 (2010).10.1016/j.actamat.2010.07.009CrossRefGoogle Scholar
Liu, Y.G., Zhou, J.Q., and Shen, T.D.: A combined dislocation-cohesive zone model for fracture in nanocrystalline materials. J. Mater. Res. 4, 694 (2012).CrossRefGoogle Scholar
Xie, H.P. and Gao, F.: The mechanics of cracks and a statistical strength theory for rocks. Int. J. Rock. Mech. Min. Sci. 37, 477 (2000).10.1016/S1365-1609(99)00074-XCrossRefGoogle Scholar
Rice, J.R. and Thompson, R.: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73 (1974).10.1080/14786437408213555CrossRefGoogle Scholar
Lin, I.H. and Thomson, R.: Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall. 34, 187 (1986).10.1016/0001-6160(86)90191-4CrossRefGoogle Scholar
Ovid'ko, I.A. and Sheinerman, A.G.: Grain size effect on crack blunting in nanocrystalline materials. Scr. Mater. 60, 627 (2009).10.1016/j.scriptamat.2008.12.028CrossRefGoogle Scholar
Zhou, J.Q., Zhu, R.T., and Zhang, Z.Z.: A constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range. Mater. Sci. Eng., A 480, 419 (2008).10.1016/j.msea.2007.07.057CrossRefGoogle Scholar
Zou, Y.T., He, D.W., Wei, X.K., Yu, R.C., Lu, T.C., Chang, X.H., and Wang, S.M.: Nanosintering mechanism of MgAl2O4 transparent ceramics under high pressure. Mater. Chem. Phys. 123, 529 (2010).10.1016/j.matchemphys.2010.05.009CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E.: X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; John Wiley & Sons: New York, NY, 1974.Google Scholar