Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T01:44:59.108Z Has data issue: false hasContentIssue false

Theoretical study on crystal structures, elastic stiffness, and intrinsic thermal conductivities of β-, γ-, and δ-Y2Si2O7

Published online by Cambridge University Press:  11 February 2015

Yixiu Luo
Affiliation:
High-performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Jiemin Wang*
Affiliation:
High-performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Junning Li
Affiliation:
Science and Technology of Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
Zijun Hu
Affiliation:
Science and Technology of Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China
Jingyang Wang*
Affiliation:
High-performance Ceramics Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: jywang@imr.ac.cn
Get access

Abstract

Yttrium disilicates (Y2Si2O7), well known for its complex polymorphism, are promising candidates for high-temperature structural materials and environmental barrier coatings due to their good properties in harsh environments. In this study, the crystal structure, elastic stiffness, and temperature dependence of the lattice thermal conductivity of β-, γ-, and δ-Y2Si2O7 are studied using first-principles calculations. Divergences of elastic stiffness are attributed to the different crystal structures and bonding strength of the polymorphs. Specially, the Si–O–Si bridge of δ phase bends with an angle of 158.1°, and this configuration enhances the bonding heterogeneity but weakens the bonding strength and stability. According to the prediction of lattice thermal conductivity using the Debye–Slack model, β-, γ-, and δ-Y2Si2O7 are characterized with very low thermal conductivity. In addition, the deviation of lattice thermal conductivities of Y2Si2O7 polymorphs is dominated by two vital factors, anharmonicity of phonon scattering and complexity of crystal structure. The present method could be used to investigate the specific factors dominating lattice thermal conductivity and may promisingly be generalized to search novel candidates with extremely low lattice thermal conductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Felsche, J.: The crystal chemistry of the rare-earth silicates. Struct. Bonding 13, 99197 (1973). Springer Berlin Heidelberg.Google Scholar
Sun, Z.Q., Zhou, Y.C., Wang, J.Y., and Li, M.S.: Thermal properties and thermal shock resistance of γ-Y2Si2O7. J. Am. Ceram. Soc. 91(8), 26232629 (2008).Google Scholar
Lee, K.N., Fox, D.S., and Bansal, N.P.: Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J. Eur. Ceram. Soc. 25, 17051715 (2005).CrossRefGoogle Scholar
Wang, J.Y., Zhou, Y.C., and Lin, Z.J.: Mechanical properties and atomistic deformation mechanism of γ-Y2Si2O7 from first-principles investigations. Acta Mater. 55, 60196026 (2007).CrossRefGoogle Scholar
Sun, Z.Q., Li, M.S., and Zhou, Y.C.: Kinetics and mechanism of hot corrosion of γ-Y2Si2O7 in thin-film Na2SO4 molten salt. J. Am. Ceram. Soc. 91(7), 22362242 (2008).Google Scholar
Hong, Z.L., Yoshida, H., Ikuhara, Y., Sakuma, T., Nishimura, T., and Mitomo, M.: The effect of additives on sintering behavior and strength retention in silicon nitride with RE-disilicate. J. Eur. Ceram. Soc. 22(4), 527534 (2002).Google Scholar
Sun, Z.Q., Wu, L., Li, M.S., and Zhou, Y.C.: Preparation of Y2Si2O7/ZrO2 composites and their composition—Mechanical properties—Tribology relationships. J. Am. Ceram. Soc. 96(10), 32283238 (2013).CrossRefGoogle Scholar
Fernandez-Carrion, A.J., Allix, M., Florian, P., Suchomel, M.R., and Becerro, A.I.: Revealing structural detail in the high temperature La2Si2O7-Y2Si2O7 phase diagram by synchrotron powder diffraction and nuclear magnetic resonance spectroscopy. J. Phys. Chem. C 116(40), 2152321535 (2012).CrossRefGoogle Scholar
Fleet, M.E. and Liu, X.Y.: High-pressure rare earth silicates: Lanthanum silicate with barium phosphate structure, holmium silicate apatite, and lutetium disilicate type X. J. Solid State Chem. 178(11), 32753283 (2005).Google Scholar
Maier, N., Rixecker, G., and Nickel, K.G.: Formation and stability of Gd, Y, Yb and Lu disilicates and their solid solutions. J. Solid State Chem. 179(6), 16301635 (2006).CrossRefGoogle Scholar
Ito, J. and Johnson, H.: Synthesis and study of yttrialite. Am. Mineral. 53, 19401952 (1968).Google Scholar
Parmentier, J., Bodart, P.R., Audoin, L., Massouras, G., Thompson, D.P., Harris, R.K., Goursat, P., and Besson, J.L.: Phase transformations in gel-derived and mixed-powder-derived yttrium disilicate, Y2Si2O7, by X-ray diffraction and 29Si MAS NMR. J. Solid State Chem. 149(1), 1620 (2000).CrossRefGoogle Scholar
Luo, Y.X., Wang, J.M., Wang, J.Y., Li, J.N., and Hu, Z.J.: Theoretical predictions on elastic stiffness and intrinsic thermal conductivities of yttrium silicates. J. Am. Ceram. Soc. 97(3), 945951 (2014).CrossRefGoogle Scholar
Cong, H.J., Zhang, H.J., Wang, J.Y., Yu, W.T., Fan, J.D., Cheng, X.F., Sun, S.Q., Zhang, J., Lu, Q.M., Jiang, C.J., and Boughton, R.: Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: Evaluation as a new laser matrix. J. Appl. Crystallogr. 42(2), 284294 (2009).Google Scholar
Milman, V. and Warren, M.C.: Elasticity of hexagonal BeO. J. Phys.: Condens. Matter 13, 241251 (2001).Google Scholar
Sun, L.C., Liu, B., Wang, J.M., Wang, J.Y., Zhou, Y.C., and Hu, Z.J.: Y4Ai2O7N2: A new oxynitride with low thermal conductivity. J. Am. Ceram. Soc. 95(10), 32783284 (2012).Google Scholar
Hill, R.: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65(5), 349354 (1952).Google Scholar
Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163164, 6774 (2003).Google Scholar
Kittel, C.: Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971), p. 100.Google Scholar
Morelli, D.T. and Slack, G.A.: High lattice thermal conductivity solids. In High Thermal Conductivity Materials, edited by Shindé, Subhash L. and Goela, Jitendra S.Springer, New York, 2006; pp. 3768.CrossRefGoogle Scholar
Sanditov, B.D., Tsydypov, Sh.B., and Sanditov, D.S.: Relation between the Grüneisen constant and Poisson’s ratio of vitreous system. Acoust. Phys. 53(5), 594597 (2007).CrossRefGoogle Scholar
Badehian, H.A., Salehi, H., and Ghoohestani, M.: First-principles study of elastic, structural, electronic, thermodynamical, and optical properties of yttria (Y2O3) ceramic in cubic phase. J. Am. Ceram. Soc. 96(6), 18321840 (2013).CrossRefGoogle Scholar
Bruls, R.J.: The Thermal Conductivity of Magnesium Silicon Nitride, MgSiN2, Ceramics and Related Materials, Chapter 8 (Technische Universiteit Eindhoven, Eindhoven, 2000).Google Scholar
Liddell, K. and Thompson, D.P.: X-ray diffraction data for yttrium silicates. Trans. J. Br. Ceram. Soc. 85(1), 1722 (1986).Google Scholar
Liddell, K.: University of Newcastle upon Tyne, England, UK. Private Communication, 1990.Google Scholar
Dinger, T.R., Rai, R.S., and Thomas, G.: Crystallization behavior of a glass in the Y2O3-SiO2-AlN system. J. Am. Ceram. Soc. 71(4), 236244 (1988).Google Scholar
Cruickshank, D.W.J.: The role of 3d-orbitals in π-bonds between (a) silicon, phosphorus, sulphur, or chlorine and (b) oxygen or nitrogen. Journal of the Chemical Society (Resumed), 1077, 54865504 (1961).CrossRefGoogle Scholar
Segall, M.D., Shah, R., Pickard, C.J., and Payne, M.C.: Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 54(23), 1631716320 (1996).CrossRefGoogle ScholarPubMed
Ching, W.Y., Quyang, L.Z., and Xu, Y.N.: Electronic and optical properties of Y2SiO5 and Y2Si2O7 with comparisons to α-SiO2 and Y2O3. Phys. Rev. B 67(24), 245108 (2003).CrossRefGoogle Scholar
Sun, Z.Q., Wang, J.Y., Li, M.S., and Zhou, Y.C.: Mechanical properties and damage tolerance of Y2SiO5. J. Eur. Ceram. Soc. 28, 28952901 (2008).CrossRefGoogle Scholar
Sun, Z.Q., Zhou, Y.C., Wang, J.Y., and Li, M.S.: γ-Y2Si2O7, a machinable silicate ceramics: Mechanical properties and machinability. J. Am. Ceram. Soc. 90(8), 25352541 (2007).Google Scholar
Liu, B., Wang, J.Y., Zhou, Y.C., and Li, F.Z.: Temperature dependence of elastic properties for amorphous SiO2 by molecular dynamics simulation. Chin. Phys. Lett. 25(8), 2747 (2008).Google Scholar
Yang, Z.J., Guo, Y.D., Linghu, R.F., and Yang, X.D.: First-principles calculation of the lattice compressibility, elastic anisotropy and thermodynamic stability of V2GeC. Chin. Phys. B 21(3), 036301 (2012).Google Scholar
Boakye, E.E., Keller, K.A., Mogilevsky, P.S., Parthasarathy, T.A., Ahrens, M.A., Hay, R.S., and Cinibulk, M.K.: Processing and testing Re2Si2O7 matrix composites. In Ceramic Engineering and Science Proceedings, Amer. Ceram. Soc. (ACerS), Westerville, OH, (2013); pp. 233242.Google Scholar
Wang, R.G., Pan, W., Chen, J., Fang, M.H., Cao, Z.Z., and Luo, Y.M.: Synthesis and sintering of LaPO4 powder and its application. Mater. Chem. Phys. 79(1), 3036 (2003).Google Scholar
Lawn, B.R.: Fracture of Brittle Solids (Cambridge University Press, Cambridge, UK, 1993).Google Scholar
Nye, J.F.: Physical Properties of Crystals (Clarendon Press, Oxford, 1964).Google Scholar
Liu, B., Wang, J.Y., Zhou, Y.C., Liao, T., and Li, F.Z.: Theoretical elastic stiffness, structure stability and thermal conductivity of La2Zr2O7 pyrochlore. Acta Mater. 55(9), 29492957 (2007).Google Scholar