Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:11:58.777Z Has data issue: false hasContentIssue false

Thermal and electrical transport along MWCNT arrays grown on Inconel substrates

Published online by Cambridge University Press:  31 January 2011

Sunil K. Pal
Affiliation:
Mechanical, Aerospace, & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Youngsuk Son
Affiliation:
Mechanical, Aerospace, & Nuclear Engineering, and Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180
Theodorian Borca-Tasciuc*
Affiliation:
Mechanical, Aerospace, & Nuclear Engineering, and Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180
Diana-Andra Borca-Tasciuc
Affiliation:
Mechanical, Aerospace, & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Swastik Kar
Affiliation:
Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Robert Vajtai
Affiliation:
Materials Science and Engineering and Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180
Pulickel M. Ajayan
Affiliation:
Materials Science and Engineering and Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180
*
a)Address all correspondence to this author. e-mail: borcat@rpi.edu
Get access

Abstract

This work reports on thermal and electrical conductivities and interface resistances for transport along aligned multiwalled carbon nanotubes (CNT) films grown on a nickel superalloy (Inconel) substrate. The measured specific thermal resistance of the combined Inconel–CNT and indium–CNT interfaces is of the same order as reported for CNT and silicon or SiO2 interfaces but much higher than theoretical predictions considering perfect contact between the tubes and substrate. Imperfect mechanical contact with the substrate and a large contribution caused by indium–CNT interface are thought to be mainly responsible for the high interface resistances and the low effective values of thermal and electrical conductivities. However, reported results represent an incentive for further research on CNT synthesis on metallic substrates for thermal management applications and pave the way for much easier integration of carbon nanotubes in electronic applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Prasher, R.: Thermal interface materials: Historical perspective, status, and future directions. Proc. IEEE 94, 1571 2006Google Scholar
2Sarvar, F., Whalley, D.C.Conway, P.P.: Thermal interface materials—A review of the state of the art Proceedings of the Electronics System Integration Technology Conference, Dresden, Germany, Vol. 2,2006 1292CrossRefGoogle Scholar
3Miner, A.Ghoshal, U.: Limits of heat removal in microelectronic systems. IEEE Trans. Compon. Packag. Technol. 29, 743 2006CrossRefGoogle Scholar
4Berber, S., Kwon, Y.K.Tomanek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613 2000CrossRefGoogle ScholarPubMed
5Kim, P., Shi, L., Majumdar, A.McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 2001CrossRefGoogle ScholarPubMed
6Yu, C., Shi, L., Yao, Z., Li, D.Majumdar, A.: Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842 2005Google Scholar
7Chuang, H.F., Cooper, S.M., Meyyappan, M.Cruden, B.A.: Improvement of thermal contact resistance by carbon nanotubes and nanofibers. J. Nanosci. Nanotech. 4, 964 2004CrossRefGoogle ScholarPubMed
8Sample, J.L., Rebello, K.J., Saffarian, H.Osiander, R.: Carbon nanotube coatings for thermal control Proceedings of 2004 Inter Society Conference on Thermal Phenomena,, IEEE 2004 297Google Scholar
9Xu, J.Fisher, T.S.: Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Transfer 49, 1658 2006Google Scholar
10Tong, T., Majumdar, A., Delzeit, L.Meyyappan, M.: Indium assisted multiwalled carbon nanotube array thermal interface materials Proceedings of the 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems,, ITHERM ’06, (2006) 1406Google Scholar
11Parthangal, P.M., Cavicchi, R.E.Zachariah, M.R.: A generic process of growing aligned carbon nanotube arrays on metals and metal alloys. Nanotechnology 18, 185605 2007Google Scholar
12Talapatra, S., Kar, S., Pal, S.K., Vajtai, R., Ci, L., Victor, P., Shaijumon, M.M., Kaur, S., Nalamasu, O.Ajayan, P.M.: Direct growth of carbon nanotubes on bulk metals. Nat. Nanotechnol. 1, 112 2006CrossRefGoogle ScholarPubMed
13Pal, S.K., Talapatra, S., Kar, S., Ci, L., Vajtai, R., Borca-Tasciuc, T., Schadler, L.S.Ajayan, P.M.: Time and temperature dependence of multi-walled carbon nanotube growth on Inconel 600. Nanotechnology 19, 045610 2008CrossRefGoogle ScholarPubMed
14CRC Practical Handbook of Materials Science, edited by C.T. Lynch CRC Press Boca Raton, FL 1989 488–489Google Scholar
15Yi, W., Lu, L., Zhang, D.L., Pan, Z.W.Xie, S.S.: Linear specific heat of carbon nanotubes. Phys. Rev. B 59, R9015 1999CrossRefGoogle Scholar
16Xie, S., Li, W., Pan, Z., Chang, B.Sun, L.: Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61, 1153 2000Google Scholar
17Prasher, R.S.: Predicting the thermal resistance of nanosized constrictions. Nano Lett. 5, 2155 2005CrossRefGoogle ScholarPubMed
18Prasher, R.S.Phelan, P.E.: Microscopic and macroscopic thermal contact resistances of pressed mechanical contacts. J. Appl. Phys. 100, 063538 2006CrossRefGoogle Scholar
19Son, Y., Pal, S.K., Borca-Tasciuc, T., Ajayan, P.M.Seigel, R.W.: Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate. J. Appl. Phys. 103, 024911 2008Google Scholar
20Madhusudana, C.V.: Thermal Contact Resistance Springer-Verlag New York 1996Google Scholar
21Samsonov, G.V.: (Ed.): in Handbook of the Physicochemical Properties of the Elements IFI-Plenum New York 1968CrossRefGoogle Scholar
22Raravikar, N.R., Schadler, L.S., Vijayaraghavan, A., Zhao, Y., Wei, B.Q.Ajayan, P.M.: Synthesis and characterization of thickness—aligned carbon nanotube–polymer composite films. Chem. Mater. 17, 974 2005CrossRefGoogle Scholar
23Marinelli, M., Mercuri, F., Zammit, U., Pizzoferrato, R.Scudieri, F.: Photopyroelectric study of specific heat, thermal conductivity, and thermal diffusivity of Cr2O3 at the Neel transition. Phys. Rev. B 49, 9523 1994Google Scholar
24CRC Materials Science and Engineering Handbook, edited by J.F. Shackelford and W. Alexander 3rd. ed.CRC Press Boca Raton, FL 2001Google Scholar
25Johnson, D.L.Sen, P.N.: Multiple scattering of acoustic waves with application to the index of refraction of fourth sound. Phys. Rev. B 24, 2486 1981Google Scholar
26 Sound velocity of materials http://www.bamr.co.za/.Google Scholar
27Li, X., Ci, L., Kar, S., Soldano, C., Kilpatrick, S.J.Ajayan, P.M.: Densified aligned carbon nanotube films via vapor phase infiltration of carbon. Carbon 45, 847 2007CrossRefGoogle Scholar
28Zhu, L., Xu, J., Xiu, Y., Sun, Y., Hess, D.W.Wong, C.P.: Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays. Carbon 44, 253 2006CrossRefGoogle Scholar
29Song, S.N., Wang, X.K., Chang, R.P.H.Ketterson, J.B.: Electronic properties of graphitic nanotubes from galvanomagnetic effects. Phys. Rev. Lett. 72, 697 1994Google Scholar
30Tersoff, J.: Contact resistance of carbon nanotubes. Appl. Phys. Lett. 74, 2122 1999Google Scholar