Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T01:25:46.396Z Has data issue: false hasContentIssue false

Thermal and mechanical properties of aluminum titanate–mullite composites

Published online by Cambridge University Press:  31 January 2011

Y. X. Huang
Affiliation:
Department of Ceramics and Glass Engineering, UIMC, University of Aveiro, 3810 Aveiro, Portugal
A. M. R. Senos
Affiliation:
Department of Ceramics and Glass Engineering, UIMC, University of Aveiro, 3810 Aveiro, Portugal
J. L. Baptista
Affiliation:
Department of Ceramics and Glass Engineering, UIMC, University of Aveiro, 3810 Aveiro, Portugal
Get access

Abstract

The thermal and mechanical properties of aluminum titanate–mullite composites prepared by a gel-coated powder processing method, namely a mullite precursor gel coating aluminum titanate particles (containing 2.5 wt% MgO), were investigated. A microstructure with both elongated and equiaxed mullite grains was observed in the composite samples. Both the mechanical strength and the thermal expansion coefficient increased with the mullite amount. The mechanical strength showed a strong dependence on the grain size of aluminum titanate with an exponent of −3. Inhibition of aluminum titanate grain growth due to the presence of the mullite phase enhanced the mechanical strength of the composites. The thermal shock resistance tended to decrease as the mullite content increased. The thermal stability of aluminum titanate was improved in the present composite system.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kuszyk, J.A. and Bradt, R.C., J. Am. Ceram. Soc. 56, 420 (1973).Google Scholar
2.Siebeneck, H.J., Cleveland, J.J., Hasselman, D.H.P, and Bradt, R.C., J. Am. Ceram. Soc. 59, 241 (1976).CrossRefGoogle Scholar
3.Manning, W.R., Hunter, O. Jr, Calderwood, F.W., and Stacy, D.W., J. Am. Ceram. Soc. 55, 342 (1972).CrossRefGoogle Scholar
4.Hasselman, D.P.H, Donaldson, K.Y., Anderson, E.M., and Johnson, T.A., J. Am. Ceram. Soc. 76, 2180 (1993).CrossRefGoogle Scholar
5.Garvie, R.C. and Nicholson, P.S., J. Am. Ceram. Soc. 55, 152 (1972).Google Scholar
6.Taylor, D., Br. Ceram. Trans. J. 86, 1 (1987).Google Scholar
7.Cleveland, J.J. and Bradt, R.C., J. Am. Ceram. Soc. 61, 478 (1978).CrossRefGoogle Scholar
8.Ohya, Y., Hamano, K., and Nakagawa, Z., Yogyo-Kyokai-Shi 91, 289 (1983).CrossRefGoogle Scholar
9.Baltmannsweilei, U.D., Aichwald, H.O., Hochdorf, D.F., Leonberg, U.K., Rönninge, M.J.A.H., and Nykvarn, B.N.J.P, U.S. Patent No. 4 524 732 (25 June 1985).Google Scholar
10.Dworak, W. and Fingerle, D., Br. Ceram. Trans. J. 86, 170 (1987).Google Scholar
11.Lang, S.M., Fillmore, C.L., and Maxwell, L.H., J. Res. Natl. Bur. Stand. (U.S.) 48, 298 (1952).CrossRefGoogle Scholar
12.Morishima, H., Kato, Z., Uematsu, K., Saito, K., Yano, T., and Ootsuka, N., J. Am. Ceram. Soc. 69, c226 (1986).CrossRefGoogle Scholar
13.Wohlfromm, H., Moya, J.S., and Pena, P., J. Mater. Sci. 25, 3753 (1990).CrossRefGoogle Scholar
14.Lee, H.L., Jeong, J.Y., and Lee, H.M., J. Mater. Sci. 32, 5687 (1997).Google Scholar
15.Pratapa, S., Low, I.M., and O'Connor, B.H., J. Mater. Sci. 33, 3037 (1998).CrossRefGoogle Scholar
16.Pratapa, S. and Low, I.M., J. Mater. Sci. 33, 3047 (1998).CrossRefGoogle Scholar
17.Lee, W.E. and Rainforth, W.M., in Ceramic Microstructures— Property Control by Processing (Chapman & Hall, London, United Kingdom, 1994), pp. 309312.Google Scholar
18.Yano, T., Kiyohara, M., and Otsuka, N., Yogyo-Kyokai-Shi 94, 1190 (1986).CrossRefGoogle Scholar
19.Huang, Y.X., Senos, A.M.R, and Baptista, J.L., in Proc. 4th Euro-Ceram. Soc. Conference, edited by Galassi, C. (Grupo editoriale faenza editrice, Riccione, Italy, 1995), Vol. 1, pp. 187194.Google Scholar
20.Demartin, M., Herard, C., Carry, C., and Lematire, J., J. Am. Ceram. Soc. 80, 1079 (1997).CrossRefGoogle Scholar
21.Chawla, K.K., in Ceramic Matrix Composites (Chapman & Hall, London, United Kingdom, 1993), pp. 243.Google Scholar
22.Hasselman, D.P.H, Ceram. Int. 4, 147 (1978).CrossRefGoogle Scholar
23.Ishitsuka, M., Sato, T., Endo, T., and Shimada, M., J. Am. Ceram. Soc. 70, 69 (1987).CrossRefGoogle Scholar
24.Huang, Y.X., Senos, A.M.R, and Baptista, J.L., J. Eur. Ceram. Soc. 17, 1239 (1997).CrossRefGoogle Scholar
25.Pask, J.A., Zhang, X.W., Tomsia, A.P., and Yoldas, B.E., J. Am. Ceram. Soc. 70, 704 (1987).CrossRefGoogle Scholar
26.Olgaard, D.L. and Evans, B., J. Am. Ceram. Soc. 69, c272 (1986).Google Scholar
27.Miro, A. and Notis, M.R., Mater. Sci. Res. 13, 457 (1979).Google Scholar
28.Kim, J., Kimura, T., and Yamaguchi, T., J. Mater Sci. 24, 2581 (1989).CrossRefGoogle Scholar
29.Baldo, J.B. and Bradt, C., J. Am. Ceram. Soc. 71, 720 (1988).CrossRefGoogle Scholar
30.French, J.D., Harmer, M.P., Chan, H.M., and Miller, G., J. Am. Ceram. Soc. 73, 2508 (1990).CrossRefGoogle Scholar
31.Fonseca, A.T., Vieira, J.M., and Baptista, J.L., Ceram. Int. 24, 163 (1998).CrossRefGoogle Scholar
32.Haroun, N.A. and Budworth, D.W., J. Mater. Sci. 3, 326 (1968).CrossRefGoogle Scholar
33.Huang, Y.X., Ph.D. Thesis, University of Aveiro, Portugal (1998).Google Scholar
34.Kirchner, H.P. and Gruver, R.M., J. Am. Ceram. Soc. 53, 232 (1970).Google Scholar
35.Griffith, A.A., Philos. Trans. R. Soc., London, 221A, 163 (1920).Google Scholar
36.Spriggs, R.M. and Vasilos, T., J. Am. Ceram. Soc. 46, 224 (1963).CrossRefGoogle Scholar
37.Ohya, Y. and Nakagawa, Z., J. Mater. Sci. 31, 1555 (1996).Google Scholar
38.Ohya, Y., Hamano, K., and Nakagawa, Z., Yogyo-Kyokai-Shi 94, 665 (1986).CrossRefGoogle Scholar
39.Buessem, W.R., Thielke, N.R., and Sarakauskas, R.V., Ceram. Age 60(11), 38 (1952).Google Scholar
40.Yano, T., Nagai, N., Kiyohara, M., Saito, K., and Otsuka, N., Yogyo-Kyokai-Shi 94, 44 (1986).Google Scholar
41.Buscaglia, V., Battilana, G., Leoni, M., and Nanni, P., J. Mater. Sci. 31, 5009 (1996).CrossRefGoogle Scholar
42.Kato, E., Daimon, K., Takahashi, J., Kato, R., and Hamano, K., Rep. Res. Lab. Eng. Mater. Tokyo Inst. Technol. 9, 87 (1984).Google Scholar
43.Freudenberg, B., Seyer, J., and Gugel, E., U.S. Patent No. 5 153 153 (6 October 1992).Google Scholar