Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T20:56:45.586Z Has data issue: false hasContentIssue false

Thermal and structural properties of B2O3–H2O glasses

Published online by Cambridge University Press:  03 March 2011

R. Brüning
Affiliation:
Physics Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1E6
S. Patterson
Affiliation:
Physics Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1E6
Get access

Abstract

B2–2xO3–2xH2x glasses were prepared by quenching the melt contained in sealed tubes. The glass-forming range extends from x = 0 to 0.50 (equal to the stoichiometry of metaboric acid, HBO2). The glasses were characterized by differential scanning calorimetry and x-ray scattering. With increasing water content, the glass-transition temperature, Tg, decreases from 553 to 333 K. The specific heat of water-rich samples shows an unusual peak just above Tg. The origin of this peak, which is seen upon heating and cooling, has not been identified. Unlike the composition dependence of Tg, the x-ray structure factors depend for the most part linearly on the composition. In analogy with the crystalline layer compounds α-HBO2 and B(OH)3, the x-ray scattering data show evidence for layering in the medium-range order of water-rich glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Milberg, M.E. and Meller, F., J. Chem. Phys. 31, 126 (1959).CrossRefGoogle Scholar
2.Meller, F. and Milberg, M.E., J. Am. Ceram. Soc. 43, 353 (1960).CrossRefGoogle Scholar
3.Silver, A.H., J. Chem. Phys. 32, 959 (1960).CrossRefGoogle Scholar
4.Parsons, J.L. and Milberg, M.E., J. Am. Ceram. Soc. 43, 326 (1960).CrossRefGoogle Scholar
5.Milberg, M.E., Belitz, R.K., and Silver, A.H., Phys. Chem. Glasses 1, 155 (1960).Google Scholar
6.Ramos, M.A., Moreno, J.A., Vieira, S., Prieto, C., and Fernandez, J.F., Non-Cryst, J.. Solids 221, 170 (1997).Google Scholar
7.Mozzi, R.L. and Warren, B.E., J. Appl. Cryst. 3, 251 (1970).CrossRefGoogle Scholar
8.Sakowski, J. and Herms, G., Non-Cryst, J.. Solids 293–295, 304 (2001).Google Scholar
9.Tazaki, H., J. Sci. Hiroshima Univ. A 10, 37 (1940).Google Scholar
10.Peters, C.R. and Milberg, M.E., Acta Crystallogr. 17, 229 (1964).CrossRefGoogle Scholar
11.Zachariasen, W.H., Acta Crystallogr. 7, 305 (1954).CrossRefGoogle Scholar
12.Zachariasen, W.H., Acta Crystallogr. 16, 385 (1963).CrossRefGoogle Scholar
13.Berger, S.V., Acta Crystallogr. 5, 389 (1951).CrossRefGoogle Scholar
14.Jellison, G.E., Jr., Planek, L.W., Bray, P.J., and Rouse, G.B., Jr., J. Chem. Phys. 66, 802 (1977).CrossRefGoogle Scholar
15.Grimsditch, M., Polian, A., and Wright, A.C., Phys. Rev. B 54, 152 (1996).CrossRefGoogle Scholar
16.Hannon, A.C., Grimley, D.I., Hulme, R.A., Wright, A.C., and Sinclair, R.N., Non-Cryst. Solids 177, 299 (1994).CrossRefGoogle Scholar
17.Swenson, J. and Börjesson, L., Phys. Rev. B 55, 11138 (1997).CrossRefGoogle Scholar
18.Joo, C., Werner, U.-Zwanziger, and Zwanziger, J., Non-Cryst, J.. Solids 261, 283 (2000).Google Scholar
19.Joo, C., Werner, U.-Zwanziger, and Zwanziger, J., Non-Cryst, J.. Solids 271, 265 (2000).Google Scholar
20.Maranas, J.K., Chen, Y., Stillinger, D.K., and Stillinger, F.H., J. Chem. Phys. 115, 6578 (2001).CrossRefGoogle Scholar
21.Shkrob, I.A., Tadjikov, B.M., Chemerisov, S.D., and Trifunac, A.D., J. Chem. Phys. 111, 5124 (1999).CrossRefGoogle Scholar
22.Golubkov, V.V., Glass Phys. Chem. 22, 178 (1996).Google Scholar
23.Ma, X., Unertl, W.N., and Erdemir, A., J. Mater. Res. 14, 3455 (1999).CrossRefGoogle Scholar
24.McCalla, E. and Brüning, R., J. Mater. Res. 17, 3098 (2002).CrossRefGoogle Scholar
25.Cromer, J.T. and Mann, J.B., Acta Crystallogr. 24, 321 (1968).CrossRefGoogle Scholar
26.Chason, E. and Spaepen, F., J. Appl. Phys. 64, 4435 (1988).CrossRefGoogle Scholar
27.DeBolt, M.A., Easteal, A.J., Macedo, P.B., and Moynihan, C.T., J. Am. Ceram. Soc. 59, 16 (1976).CrossRefGoogle Scholar
28.Velikov, V., Borick, S., and Angell, C.A., Science 294, 2335 (2001).CrossRefGoogle Scholar
29.Hura, G., Sorenson, J.M., Glaeser, R.M., and Head-Gordon, T., J. Chem. Phys. 113, 9140 (2000).CrossRefGoogle Scholar
30.Aziz, M.J., Nygren, E., Hays, J.F., and Turnbull, D., J. Appl. Phys. 57, 2233 (1985).CrossRefGoogle Scholar
31.Lower, N.P., McRae, J.L., Feller, H.A., Betzen, A.R., Kapoor, S., Affatigato, M., and Feller, S.A., Non, J.. Solids 293–295, 669 (2001).Google Scholar
32.MacDonald, W.M. and Anderson, A.C., Phys. Rev. B. 32, 1208 (1985).CrossRefGoogle Scholar
33.Feltz, A., Amorphous Inorganic Materials and Glasses (VCH Verlagsgesellschaft, Weinheim, Germany, 1993), p. 51.Google Scholar
34.Warren, B.E., X-ray Diffraction (Dover Publications, New York, 1990), p. 117.Google Scholar