Article contents
Thermal arrest analysis of thermoelastic martensitic transformations in shape memory alloys
Published online by Cambridge University Press: 19 May 2011
Abstract
This study investigated a fundamental aspect of thermoelastic martensitic transformations in different shape memory alloys by means of interrupted thermal analysis technique using differential scanning calorimetry (DSC). The objective of this study was to determine the true transformation temperature interval. It also provides the opportunity to further the discussion of time dependence of the transformations. The study applied a technique of thermal arrest amidst phase transformations. The transformation temperature intervals were found to be 8.4 and 12.9 K for the forward and reverse B2↔B19′ martensitic transformation in a near-equiatomic Ti-50.2 at.% Ni alloy and 14.7 and 12.8 K in a Ni-rich Ti-50.8 at.% Ni alloy and 7.3 and 9.1 K for the L21↔orthorhombic transformation in a Ni43Co7Mn39In11 alloy. These values were significantly smaller than those commonly reported in the literature. The experimental evidences also demonstrated that the apparent time dependences of the martensitic transformations manifested in DSC analysis were artifacts caused by instrumental thermal inertia.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2011
References
REFERENCES
- 4
- Cited by