Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-30T23:02:52.326Z Has data issue: false hasContentIssue false

Thermal behavior of radiation damage cascades via the binary collision approximation: Comparison with molecular dynamics results

Published online by Cambridge University Press:  31 January 2011

M. Caro
Affiliation:
Paul Scherrer Institute, 5232 Villigen, Switzerland
A. Ardelea
Affiliation:
Paul Scherrer Institute, 5232 Villigen, Switzerland
A. Caro
Affiliation:
Paul Scherrer Institute, 5232 Villigen, Switzerland
Get access

Abstract

Based on the profile of the energy deposition obtained using the binary collision model, we follow the diffusion of energy by solving a simplified version of the heat equation. An estimation of the molten zone compares very well with the molecular dynamics prediction for the same event. We discuss the reasons for this agreement and the relevance of such simplified procedure in terms of present-day computer limitations to simulate high energy cascades using molecular dynamics.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Proceedings of the Workshop, Effects of Recoil Energy Spectrum and Nuclear Transmutations on the Evolution of Microstructure, March 1988, Lugano, Switzerland, edited by W.V. Green, M. Victoria, T. Leffers, and B. N. Singh, Radiat. Eff. Eff. 113, Nos. 1–3 (1990).Google Scholar
2Thompson, M. O., Picraux, S.T., and Williams, J. S., in Beam-Solid Interactions and Phase Transformations, edited by Kurz, H., Olson, G. L., and Poate, J. M. (Mater. Res. Soc. Symp. Proc. 51, Pittsburgh, PA, 1986).Google Scholar
3Gibson, J. B., Goland, A. N., Milgram, M., and Vineyard, G. H., Phys. Rev. 120, 1229 (1960);CrossRefGoogle Scholar
Erginsoy, C., Vineyard, G. H., and Englert, A., Phys. Rev. 133, A595 (1964);CrossRefGoogle Scholar
see also Heermann, D., in Computer Simulation Methods in Theoretical Physics (Springer-Verlag, Berlin, 1986).CrossRefGoogle Scholar
4de la Rubia, T. Diaz, Averback, R. S., Benedek, R., and King, W. E., Phys. Rev. Lett. 59, 1930 (1987).CrossRefGoogle Scholar
5de la Rubia, T. Diaz, Averback, R. S., Hsieh, H., and Benedek, R., J. Mater. Res. 4, 579 (1989).CrossRefGoogle Scholar
6de la Rubia, T. Diaz, The Structure and Dynamics of Energetic Displacement Cascades in Cu and Ni. A Molecular Dynamics Computer Simulation Study, Ph.D. Thesis, State University of New York at Albany, (1989).Google Scholar
7Hsieh, H., de la Rubia, T. Diaz, Averback, R. S., and Benedek, R., Phys. Rev. B 40, 9986 (1989).CrossRefGoogle Scholar
8English, C. A. and Jenkins, M. L., Materials Science Forum 15–18, 1003 (1987).CrossRefGoogle Scholar
9Flynn, C. P. and Averback, R. S., Phys. Rev. B 38, 7118 (1989).CrossRefGoogle Scholar
10Caro, A. and Victoria, M., Phys. Rev. A 40, 2287 (1989).CrossRefGoogle Scholar
11Vineyard, G. H., Radiat. Eff. 29, 245 (1976).CrossRefGoogle Scholar
12Kelly, R., Radiat. Eff. 32, 91 (1977).CrossRefGoogle Scholar
13Robinson, M.T. and Torrens, I. M., Phys. Rev. B 9, 5008 (1974).CrossRefGoogle Scholar
14Robinson, M.T., in Sputtering by Particle Bombardment, edited by Behrisch, R. (Springer-Verlag, Berlin, 1981), p. 73.CrossRefGoogle Scholar
15Schlosser, H., Vinet, P., and Ferrante, J., Phys. Rev. B 40, 5929 (1989).CrossRefGoogle Scholar