Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T22:21:02.205Z Has data issue: false hasContentIssue false

Thermal conductivity of diamond films deposited at low surface temperatures

Published online by Cambridge University Press:  03 March 2011

D. Das
Affiliation:
Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221
Raj N. Singh*
Affiliation:
Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221
S. Chattopadhyay
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan 106, Republic of China
K.H. Chen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan 106, Republic of China
*
a) Address all correspondence to this author. e-mail: Raj.Singh@uc.edu
Get access

Abstract

Polycrystalline diamond films are deposited on p-type Si (100) and n-type SiC (6H) substrates at the low surface deposition temperatures of 370 °C–530 °C using a microwave plasma-enhanced chemical vapor deposition system in which the surface temperature during deposition is monitored and controlled. A very high growth rate up to 1.3 μm/h on SiC substrate at 530 °C surface temperature is obtained. The room temperature in-plane thermal conductivity of the low-surface-temperature–deposited thin films is measured by a traveling wave method. The diamond films of grain sizes between 3 and 7 μm and deposited at 370 °C showed a high thermal conductivity value of ∼6.5 W/cm-K, which is much higher than the single crystal SiC thermal conductivity value at room temperature. Diamond films deposited on Si and SiC single crystals at higher temperatures showed even higher thermal conductivities of 11–17 W/cm-K. The structure and microstructure of these films are characterized by x-ray diffraction, scanning electron microscopy, and Raman spectroscopy, and are related to measured thermal conductivities.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Eden, C.R.: Application of diamond substrates for advanced high density packaging. Diamond Relat. Mater. 2, 1051 (1993).CrossRefGoogle Scholar
2Graebner, J.E., Jin, S., Kammlott, G.W., Herb, J.A., and Gardinier, C.F.: Large anisotropic thermal conductivity in synthetic diamond films. Nature 359, 401 (1992).CrossRefGoogle Scholar
3Graebner, J.E., Jin, S., Kammlott, G.W., Herb, J.A., and Gardinier, C.F.: Unusually high thermal conductivity in diamond films. Appl. Phys. Lett. 60, 1576 (1992).CrossRefGoogle Scholar
4Seal, M.: Passive electronic applications. Diamond Relat. Mater. 1, 1075 (1992).CrossRefGoogle Scholar
5Verhoeven, H., Reiss, H., Füsser, H-J., and Zachai, R.: Thermal resistance of thin diamond films deposited at low temperatures. Appl. Phys. Lett. 69, 1562 (1996).CrossRefGoogle Scholar
6Verhoeven, H., Flöter, A., Reiss, H., Zachai, R., Wittorf, D., and Jäger, W.: Influence of the microstructure on the thermal properties of thin polycrystalline diamond films. Appl. Phys. Lett. 71, 1329 (1997).CrossRefGoogle Scholar
7Verhoeven, H., Boettger, E., Flöter, A., Reiss, H., and Zachai, R.: Thermal resistance and electrical insulation of thin low-temperature-deposited diamond films. Diamond Relat. Mater. 6, 298 (1997).CrossRefGoogle Scholar
8Bhusari, D.M., Teng, C.W., Chen, K.H., Wei, S.L., and Chen, L.C.: Traveling wave method for measurement of thermal conductivity of thin films. Rev. Sci. Instrum. 68, 4180 (1997).CrossRefGoogle Scholar
9Das, D., Jayaseelan, V., Ramamurti, R., Kukreja, R.S., Guo, L., and Singh, R.N.: Low surface temperature synthesis and characterization of diamond thin films. Diamond Relat. Mater. (in press)(2006).CrossRefGoogle Scholar
10Hempel, M. and Härting, M.: Characterization of CVD-grown diamond and its residual stress state. Diamond Relat. Mater. 8, 1555 (1999).CrossRefGoogle Scholar
11Wild, C., Herres, N., and Koidl, P.: Texture formation in polycrystalline diamond films. J. Appl. Phys. 68, 973 (1990).CrossRefGoogle Scholar
12 SPSS Inc.: Peak Fit 4.0 for Windows User’s Manual, Peak Separation and Analysis Software (SPSS Inc., Chicago, IL, 1997).Google Scholar
13Graebner, J.E., Mucha, J.A., Seibles, L., and Kammlott, G.W.: The thermal conductivity of chemical-vapor-deposited diamond films on silicon. J. Appl. Phys. 71, 3143 (1992).CrossRefGoogle Scholar
14Philip, J., Hess, P., Feygelson, T., Butler, J.E., Chattopadhyay, S., Chen, K.H., and Chen, L.C.: Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J. Appl. Phys. 93, 2164 (2003).CrossRefGoogle Scholar
15Chattopadhyay, S., Chen, L.C., Chien, S.C., Lin, S.T., and Chen, K.H.: Bonding characterization, density measurement, and thermal diffusivity studies of amorphous silicon carbon nitride and boron carbon nitride thin films. J. Appl. Phys. 92, 5150 (2002).CrossRefGoogle Scholar
16Chattopadhyay, S., Chien, S.C., Chen, L.C., Chen, K.H., and Lee, H.Y.: Thermal diffusivity in diamond, SiC xNy, and BCx Ny. Diamond Relat. Mater. 11, 708 (2002).CrossRefGoogle Scholar