Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T08:21:26.903Z Has data issue: false hasContentIssue false

Thermal conductivity of metallic glassy alloys and its relationship to the glass forming ability and the observed cooling rates

Published online by Cambridge University Press:  31 January 2011

Dmitri V. Louzguine-Luzgin*
Affiliation:
WPI Advanced Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan; and Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Takanobu Saito
Affiliation:
Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
Junji Saida
Affiliation:
Center for Interdisciplinary Research, Tohoku University, Aramaki, Aoba, Sendai 980-8578, Japan
Akihisa Inoue
Affiliation:
WPI Advanced Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan; and Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: dml@imr.tohoku.ac.jp
Get access

Abstract

In this work, we study the cooling behavior of several typical bulk glassy alloys on casing and present the relationship between the thermal conductivity of a glassy alloy and the cooling rate upon mold casting. The cooling rates obtained for Ti-, Zr-, Pd-, and Cu-based bulk glass forming alloys are found to scale with the thermal conductivities of the studied glassy alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 1995Google Scholar
2Greer, A.L.: Metallic glasses. Science 267, 1947 1995Google Scholar
3Cohen, M.H.Grest, G.S.: Liquid-glass transition, a free-volume approach. Phys. Rev. B 20, 1077 1979Google Scholar
4van den Beukel, A.Sietsma, J.: The glass transition as a free volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 1990Google Scholar
5Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999CrossRefGoogle Scholar
6Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000Google Scholar
7Loffler, J.F.: Bulk metallic glasses. Intermetallics 11, 529 2003CrossRefGoogle Scholar
8Peter, W.H., Buchanan, R.A., Liu, C.T., Liaw, P.K., Morrison, M.L., Horton, J.A., Carmichael, C.A. Jr.Wright, J.L.: Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 10, 1157 2002CrossRefGoogle Scholar
9Pang, S., Zhang, T., Asami, K.Inoue, A.: Bulk glassy Ni– (Co–)Nb–Ti–Zr alloys with high corrosion resistance and high strength. Mater. Sci. Eng., A 375, 368 2004Google Scholar
10Wang, G.Y., Liaw, P.K., Peter, W.H., Yang, B., Yokoyama, Y., Benson, M.L., Green, B.A., Kirkham, M.J., White, S.A., Saleh, T.A., McDaniels, R.L., Steward, R.V., Buchanan, R.A., Liu, C.T.Brooks, C.R.: Fatigue behavior of bulk-metallic glasses. Intermetallics 12, 885 2004Google Scholar
11Louzguine-Luzgin, D.V.Inoue, A.: Nano-devitrification of glassy alloys. J. Nanosci. Nanotechnol. 5, 999 2005CrossRefGoogle ScholarPubMed
12Egami, T.: Nano-glass mechanism of bulk metallic glass formation. Mater. Trans. 43, 510 2002Google Scholar
13Desré, P.J.: On the effect of the number of components on glass-forming ability of alloys from the liquid state: Application to the new generation of multicomponent bulk glasses. Mater. Trans., JIM 38, 583 1997Google Scholar
14Turnbull, D.Cohen, M.H.: Free-volume model of the amorphous phase: Glass transition. J. Chem. Phys. 34, 120 1961Google Scholar
15Chen, H.S.: Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metall. 22, 1505 1974Google Scholar
16Yavari, A.R.Negri, D.: Effect of concentration gradients on nanostructure development during primary crystallization of soft-magnetic iron-based amorphous alloys and its modeling. Nanostruct. Mater. 8, 969 1997Google Scholar
17Lu, Z.P.Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 2002Google Scholar
18Nishiyama, N.Inoue, A.: Direct comparison between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd–Cu–Ni–P alloys. Mater. Trans. 43, 1913 2002Google Scholar
19Louzguine-Luzgin, D.V., Setyawan, A.D., Kato, H.Inoue, A.: Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys. Appl. Phys. Lett. 88, 251902 2006CrossRefGoogle Scholar
20Louzguine-Luzgin, D.V., Setyawan, A.D., Kato, H.Inoue, A.: Thermal conductivity of an alloy in relation to the observed cooling rate and glass-forming ability. Philos. Mag. 87, 1845 2007Google Scholar
21Kuo, Y.K., Sivakumar, K.M., Su, C.A., Ku, C.N., Lin, S.T., Kaiser, A.B., Qiang, J.B., Wang, Q.Dong, C.: Measurement of low-temperature transport properties of Cu-based Cu-Zr-Ti bulk metallic glass. Phys. Rev. B 74, 014208 2006Google Scholar
22Yamasaki, M., Kagao, S.Kawamura, Y.: Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass. Scr. Mater. 53, 63 2005CrossRefGoogle Scholar
23Harms, U., Shen, T.D.Schwarz, R.B.: Thermal conductivity of Pd40Ni40–xCuxP20 metallic glasses. Scr. Mater. 47, 411 2002CrossRefGoogle Scholar
24Zhou, Z., Uher, C., Xu, D., Johnson, W.L., Gannon, W.Aronson, M.C.: On the existence of Einstein oscillators and thermal conductivity in bulk metallic glass. Appl. Phys. Lett. 89, 031924 2006CrossRefGoogle Scholar
25Choi-Yim, H., Xu, D.Johnson, W.L.: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X X = B,Fe,Cu alloy systems. Appl. Phys. Lett. 82, 1030 2003Google Scholar
26Arroyave, R., Eagar, T.W.Kaufman, L.: Thermodynamic assessment of the Cu–Ti–Zr system. J. Alloys Compd. 351, 158 2003Google Scholar
27Gulbrandsen-Dahl, S., Solberg, J.K.Grong, O.: Digital photocalorimetric measurements of cooling rates in chill block melt spinning of Mm(NiCoMnAl)5 hydride forming alloy. Mater. Sci. Technol. 17, 1556 2001CrossRefGoogle Scholar