Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T04:34:57.911Z Has data issue: false hasContentIssue false

Thermal oxidation behavior of glass-forming Ti–Zr–(Nb)–Si alloys

Published online by Cambridge University Press:  15 April 2016

Somayeh Abdi
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden, Germany
Matthias Bönisch*
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden, Germany; and TU Dresden, Institute of Structural Physics, D-01069 Dresden, Germany
Steffen Oswald
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden, Germany
Mohsen Samadi Khoshkhoo
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden, Germany
Wolfgang Gruner
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden, Germany
Martina Lorenzetti
Affiliation:
Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
Ulrike Wolff
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden, Germany
Mariana Calin
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden, Germany
Jürgen Eckert
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden, Germany
Annett Gebert
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden, Germany
*
a) Address all correspondence to this author. e-mail: m.boenisch@ifw-dresden.de
Get access

Abstract

The glass-forming Ti75Zr10Si15 and Ti60Zr10Nb15Si15 alloys composed of nontoxic elements may represent new materials for biomedical applications. For this study, melt-spun alloy samples exhibiting glass–matrix nanocomposite structures were subjected to thermal oxidation treatments in synthetic air to improve their surface characteristics. 550 °C was identified as the most appropriate temperature to carry out oxidative surface modifications while preserving the initial metastable microstructure. The modified surfaces were evaluated considering morphological and structural aspects, and it was found that the oxide films formed at 550 °C are amorphous and consist mainly of TiO2; their thicknesses were estimated to be ∼560 nm for Ti75Zr10Si15 and ∼460 nm for Ti60Zr10Nb15Si15. The thermally treated sample surfaces exhibit not only higher roughnesses and higher hardnesses but also improved wettability compared to the as-spun materials. By immersion of oxidized samples in simulated body fluid Ca- and P-containing coatings exhibiting typical morphologies of apatite are formed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Suryanarayana, C. and Inoue, A.: Bulk metallic glasses (CRC Press, Boca Raton, 2011).Google Scholar
Oak, J.-J., Louzguine-Luzgin, D.V., and Inoue, A.: Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants. Mater. Sci. Eng., C 29, 322 (2009).CrossRefGoogle Scholar
Oak, J.J., Louzguine-Luzgin, D.V., and Inoue, A.: Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior. J. Mater. Res. 22, 1346 (2007).Google Scholar
Qin, F., Wang, X., Zhu, S., Kawashima, A., Asami, K., Inoue, A.: Fabrication, and corrosion property of novel Ti-based bulk glassy alloys without Ni. Mater. Trans. 48, 515 (2007).Google Scholar
Calin, M., Gebert, A., Ghinea, A.C., Gostin, P.F., Abdi, S., Mickel, C., and Eckert, J.: Designing biocompatible Ti-based metallic glasses for implant applications. Mater. Sci. Eng., C 33, 875 (2013).Google Scholar
Abdi, S., Oswald, S., Gostin, P.F., Helth, A., Sort, J., Baró, M.D., Calin, M., Schultz, L., Eckert, J., and Gebert, A.: Designing new biocompatible glass-forming Ti75−x Zr10Nb x Si15 (x = 0, 15) alloys: Corrosion, passivity, and apatite formation. J. Biomed. Mater. Res., Part B 104B, 2738 (2015).Google Scholar
Abdi, S., Khoshkhoo, M.S., Shuleshova, O., Bönisch, M., Calin, M., Schultz, L., Eckert, J., Baró, M.D., Sort, J., and Gebert, A.: Effect of Nb addition on microstructure evolution and nanomechanical properties of a glass-forming Ti–Zr–Si alloy. Intermetallics 46, 156 (2014).Google Scholar
Variola, F., Vetrone, F., Richert, L., Jedrzejowski, P., Yi, J.H., Zalzal, S., Clair, S., Sarkissian, A., Perepichka, D.F., Wuest, J.D., Rosei, F., and Nanci, A.: Improving Biocompatibility of implantable metals by Nanoscale modification of Surfaces: An Overview of Strategies, fabrication methods, and Challenges. Small 5, 996 (2009).CrossRefGoogle Scholar
Liu, X., Chu, P.K., and Ding, C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng., R 47, 49 (2004).CrossRefGoogle Scholar
Kumar, S., Sankara Narayanan, T.S.N., Ganesh Sundara Raman, S., and Seshadri, S.K.: Thermal oxidation of Ti6Al4V alloy: Microstructural and electrochemical characterization. Mater. Chem. Phys. 119, 337 (2010).Google Scholar
Long, M. and Rack, H.J.: Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19, 1621 (1998).CrossRefGoogle ScholarPubMed
Dearnley, P.A.: A review of metallic, ceramic and surface-treated metals used for bearing surfaces in human joint replacements. Proc. Inst. Mech. Eng., Part H 213, 107 (1999).CrossRefGoogle ScholarPubMed
Minagar, S., Berndt, C.C., Wang, J., Ivanova, E., and Wen, C.: A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 8, 2875 (2012).CrossRefGoogle ScholarPubMed
Hanawa, T.: Research and development of metals for medical devices based on clinical needs. Sci. Technol. Adv. Mater. 13, 064102 (2012).Google Scholar
Kumar, S., Narayanan, T., Raman, S.G.S., and Seshadri, S.K.: Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time. Mater. Sci. Eng., C 29, 1942 (2009).Google Scholar
Garcia-Alonso, M.C., Saldana, L., Valles, G., Gonzalez-Carrasco, J.L., Gonzalez-Cabrero, J., Martinez, M.E., Gil-Garay, E., and Munuera, L.: In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials 24, 19 (2003).Google Scholar
Kumar, S., Narayanan, T., Raman, S.G.S., and Seshadri, S.K.: Thermal oxidation of CP Ti—An electrochemical and structural characterization. Mater. Charact. 61, 589 (2010).Google Scholar
Kumar, S., Narayanan, T.S.N.S., and Ganesh Sundara Raman, S., and Seshadri, S.K.: Surface modification of CP-Ti to improve the fretting-corrosion resistance: Thermal oxidation vs. anodizing. Mater. Sci. Eng., C 30, 921 (2010).Google Scholar
Lopez, M.F., Jimenez, J.A., and Gutierrez, A.: Corrosion study of surface-modified vanadium-free titanium alloys. Electrochim. Acta 48, 1395 (2003).Google Scholar
Ahn, H., Lee, D., Lee, K.-M., Lee, K., Baek, D., and Park, S.-W.: Oxidation behavior and corrosion resistance of Ti–10Ta–10Nb alloy. Surf. Coat. Technol. 202, 5784 (2008).Google Scholar
Patel, S.B., Hamlekhan, A., Royhman, D., Butt, A., Yuan, J., Shokuhfar, T., Sukotjo, C., Mathew, M.T., Jursich, G., and Takoudis, C.G.: Enhancing surface characteristics of Ti–6Al–4V for bio-implants using integrated anodization and thermal oxidation. J. Mater. Chem. B 2, 3597 (2014).Google Scholar
Sollazzo, V., Pezzetti, F., Scarano, A., Piattelli, A., Massari, L., Brunelli, G., and Carinci, F.: Anatase coating improves implant osseointegration in vivo. J. Craniofac. Surg. 18, 806 (2007).Google Scholar
Forsgren, J., Svahn, S., Jarmar, T., and Engqvist, H.: Formation and adhesion of biomimetic hydroxyapatite deposited on titantium substrates. Acta Biomater. 3, 980 (2007).Google Scholar
Oswald, S., Gostin, P.-F., Helth, A., Abdi, S., Giebeler, L., Wendrock, H., Calin, M., Eckert, J., and Gebert, A.: Xps and AES sputter-depth profiling at surfaces of biocompatible passivated Ti-based alloys: Concentration quantification considering chemical effects. Surf. Interface Anal. 46, 683 (2014).Google Scholar
Kokubo, T. and Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials 27, 2907 (2006).Google Scholar
Cox, J.D., Wagman, D.D., and Medvedev, V.A., eds.: Key values for thermodynamics (Hemisphere Publishing Co., New York, 1989).Google Scholar
Metikos-Huković, M., Kwokal, A., and Piljac, J.: The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 24, 3765 (2003).Google Scholar
Gabbott, P., ed.: Principles and applications of thermal analysis (Blackwell Publishing Ltd., Oxford, 2008).Google Scholar
Deal, B.E. and Grove, A.S.: General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36, 3770 (1965).Google Scholar
Perez, P., Haanappel, V.A.C., and Stroosnijder, M.F.: The effect of niobium on the oxidation behaviour of titanium in N2/20% O2 atmospheres. Mater. Sci. Eng., A 284, 126 (2000).Google Scholar
Roy, T.K., Balasubramaniam, R., and Ghosh, A.: High-temperature oxidation of Ti3Al-based titanium aluminides in oxygen. Metall. Mater. Trans. A 27, 3993 (1996).Google Scholar
Armenise, M.N., Canali, C., DeSario, M., Carnera, A., Mazzoldi, P., and Celotti, G.: Characterization of TiO2, LiNb3O8, and (Ti0.65Nb0.35)O2 compound growth observed during Ti:LiNbO3 optical waveguide fabrication. J. Appl. Phys. 54, 6223 (1983).Google Scholar
Nychka, J. and Gentleman, M.: Implications of wettability in biological materials science. JOM 62, 39 (2010).CrossRefGoogle Scholar
Gostin, P.F., Helth, A., Voss, A., Sueptitz, R., Calin, M., Eckert, J., and Gebert, A.: Surface treatment, corrosion behavior, and apatite-forming ability of Ti–45Nb implant alloy. J. Biomed. Mater. Res., Part B 101B, 269 (2013).CrossRefGoogle Scholar