Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T05:35:24.189Z Has data issue: false hasContentIssue false

Thermal processing and enthalpy storage of a binary amorphous solid: A molecular dynamics study

Published online by Cambridge University Press:  04 July 2017

Peter M. Derlet*
Affiliation:
Condensed Matter Theory Group, Paul Scherrer Institut, PSI-Villigen 5232, Switzerland
Robert Maaß
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, USA
*
a)Address all correspondence to this author. e-mail: peter.derlet@psi.ch
Get access

Abstract

Using very long molecular dynamics simulations of duration up to a microsecond of physical time, temperature protocols spanning up to five orders of magnitude in time are performed to investigate thermally activated structural relaxation in a model binary amorphous solid. The simulations demonstrate significant local structural excitations (LSE) as a function of increasing temperature and show that enthalpy rather than internal potential energy is primarily responsible for relaxation. At low temperatures these LSE involve atoms whose displacements are smaller than a typical bond length, whereas at higher temperatures approaching that of the glass transition regime, bond-length displacements occur in the form of string-like motion where one atom replaces the position of another. Such thermally activated excitations are observed to mainly involve the smaller atom type. The observed enthalpy changes can be correlated with the level of internal hydrostatic stress homogenization and icosahedral content within the glassy solid.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Franz Faupel

References

REFERENCES

Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
Hufnagel, T.C., Schuh, C.A., and Falk, M.L.: Acta materialia deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Mater. 109, 375 (2016).Google Scholar
Pampillo, C.A.: Localized shear deformation in a glassy metal. Scr. Metall. 6, 915 (1972).CrossRefGoogle Scholar
Leamy, H.J., Chen, H.S., and Wang, T.T.: Plastic flow and fracture of metallic glass. Metall. Trans. 3, 699 (1972).Google Scholar
Sun, Y.H., Concustell, A., and Greer, A.L.: Rejuvenation of metallic glasses by non-affine thermal strain. Nat. Rev. 1, 1 (2016).Google Scholar
Ketov, S.V., Sun, Y.H., Nachum, S., Lu, Z., Checchi, A., Beraldin, A.R., Bai, H.Y., Wang, W.H., Louzguine-Luzgin, D.V., Carpenter, M.A., and Greer, A.L.: Rejuvenation of metallic glasses by non-affine thermal strain. Nature 200, 524 (2015).Google Scholar
Greer, A.L. and Sun, Y.H.: Stored energy in metallic glasses due to strains within the elastic limit. Philos. Mag. 96, 1643 (2016).Google Scholar
Küchemann, S. and Maass, R.: Gamma relaxation in bulk metallic glasses. Scr. Mater. 137, 5 (2017).Google Scholar
Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).Google Scholar
Argon, A.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
Falk, M.L. and Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).Google Scholar
Falk, M.L. and Langer, J.S.: Deformation and failure of amorphous, solidlike materials. Annu. Rev. Condens. Matter Phys. 2, 353 (2011).CrossRefGoogle Scholar
Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241, 376 (1957).Google Scholar
Bulatov, V.V. and Argon, A.S.: A stochastic model for continuum elasto-plastic behavior. I. Numerical approach and strain localization. Modell. Simul. Mater. Sci. Eng. 2, 167 (1994).CrossRefGoogle Scholar
Bulatov, V.V. and Argon, A.S.: A stochastic model for continuum elasto-plastic behavior. II. A study of the glass transition and structural relaxation. Modell. Simul. Mater. Sci. Eng. 2, 185 (1994).Google Scholar
Bulatov, V.V. and Argon, A.S.: A stochastic model for continuum elasto-plastic behavior. III. Plasticity in ordered versus disordered solids. Modell. Simul. Mater. Sci. Eng. 2, 203 (1994).CrossRefGoogle Scholar
Homer, E.R. and Schuh, C.A.: Mesoscale modeling of amorphous metals by shear transformation zone dynamics. Acta Mater. 57, 2823 (2009).Google Scholar
Homer, E.R. and Schuh, C.A.: Three-dimensional shear transformation zone dynamics model for amorphous metals. Modell. Simul. Mater. Sci. Eng. 18, 065009 (2010).CrossRefGoogle Scholar
Li, L., Homer, E.R., and Schuh, C.A.: Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable. Acta Mater. 61, 3347 (2013).CrossRefGoogle Scholar
Maloney, C.E. and Lemaître, A.: Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow. Phys. Rev. Lett. 93, 016001 (2004).CrossRefGoogle Scholar
Shi, Y. and Falk, M.L.: Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005).CrossRefGoogle ScholarPubMed
Demkowicz, M.J. and Argon, A.S.: Liquidlike atomic environments act as plasticity carriers in amorphous silicon. Phys. Rev. B 72, 245205 (2005).Google Scholar
Rodney, D., Tanguy, A., and Vandembroucq, D.: Modeling the mechanics of amorphous solids at different length scale and time scale. Modell. Simul. Mater. Sci. Eng. 19, 083001 (2011).Google Scholar
Maaß, R., Klaumüzer, D., and Löffler, J.F.: Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater. 59, 3205 (2011).CrossRefGoogle Scholar
Maaß, R., Klaumüzer, D., Villard, G., Derlet, P.M., and Löffler, J.F.: Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass. Appl. Phys. Lett. 100, 071904 (2012).CrossRefGoogle Scholar
Tönnies, D., Samwer, K., Derlet, P.M., Volkert, C.A., and Maaß, R.: Rate-dependent shear-band initiation in a metallic glass. Appl. Phys. Lett. 106, 171907 (2015).CrossRefGoogle Scholar
Maaß, R. and Löffler, J.F.: Shear-band dynamics in metallic glasses. Adv. Funct. Mater. 25, 2353 (2015).Google Scholar
Barkema, G.T. and Mousseau, N.: Event-based relaxation of continuous disordered systems. Phys. Rev. Lett. 77, 4358 (1996).CrossRefGoogle ScholarPubMed
Mousseau, N. and Barkema, G.T.: Traveling through potential energy landscapes of disordered materials: The activation-relaxation technique. Phys. Rev. E 57, 2419 (1998).CrossRefGoogle Scholar
Olsen, R.A., Kroes, G.J., Henkelman, G., Arnaldsson, A., and Jónsson, H.: Comparison of methods for finding saddle points without knowledge of the final states. J. Chem. Phys. 121, 9776 (2004).Google Scholar
Rodney, D. and Schuh, C.A.: Distribution of thermally activated plastic events in a flowing glass. Phys. Rev. Lett. 102, 235503 (2009).Google Scholar
Rodney, D. and Schuh, C.A.: Yield stress in metallic glasses: The jamming–unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique. Phys. Rev. B 80, 184203 (2009).Google Scholar
Kallel, H., Mousseau, N., and Schiettekatte, F.: Evolution of the potential-energy surface of amorphous silicon. Phys. Rev. Lett. 105, 045503 (2010).CrossRefGoogle ScholarPubMed
Koziatek, P., Barrat, J-L., Derlet, P.M., and Rodney, D.: Inverse Meyer-Neldel behavior for activated processes in model glasses. Phys. Rev. B 87, 224105 (2013).CrossRefGoogle Scholar
Swayamjyoti, S., Löffler, J.F., and Derlet, P.M.: Local structural excitations in model glasses. Phys. Rev. B 89, 224201 (2014).Google Scholar
Fan, Y., Iwashita, T., and Egami, T.: How thermally activated deformation starts in metallic glass. Nat. Commun. 5, 5083 (2014).CrossRefGoogle ScholarPubMed
Fan, Y., Iwashita, T., and Egami, T.: Crossover from localized to cascade relaxations in metallic glasses. Phys. Rev. Lett. 115, 045501 (2015).CrossRefGoogle ScholarPubMed
Swayamjyoti, S., Löffler, J.F., and Derlet, P.M.: Local structural excitations in model glass systems under applied load. Phys. Rev. B 93, 144202 (2016).CrossRefGoogle Scholar
Wahnström, G.: Molecular-dynamics study of a supercooled two-component Lennard-Jones system. Phys. Rev. A 44, 3752 (1991).Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995). Available at: http://lammps.sandia.gov.CrossRefGoogle Scholar
Baumer, R.E. and Demkowicz, M.J.: Glass transition by gelation in a phase separating binary alloy. Phys. Rev. Lett. 110, 145502 (2013).Google Scholar
Derlet, P.M., Maaß, R., and Löffler, J.F.: The boson peak of model glass systems and its relation to atomic structure. Eur. Phys. J. B 85, 148 (2012).Google Scholar
Chen, H.S. and Coleman, E.: Structure relaxation spectrum of metallic glasses. Appl. Phys. Lett. 28, 245 (1976).Google Scholar
Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).CrossRefGoogle ScholarPubMed
Ding, J., Cheng, Y-Q., and Ma, E.: Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid. Acta Mater. 69, 343 (2014).Google Scholar
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).Google Scholar
Donati, C., Douglas, J.F., Kob, W., Plimpton, S.J., Poole, P.H., and Glotzer, S.C.: Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338 (1998).Google Scholar
Schröder, T.B., Sastry, S., Dyre, J.C., and Glotzer, S.C.: Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid. J. Chem. Phys. 112, 9834 (2000).Google Scholar
Gebremichael, Y., Vogel, M., and Glotzer, S.C.: Particle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquid. J. Chem. Phys. 120, 4415 (2004).Google Scholar
Vogel, M., Doliwa, B., Heuer, A., and Glotzer, S.C.: Particle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid. J. Chem. Phys. 120, 4404 (2004).Google Scholar
Kawasaki, T. and Onuki, A.: Dynamics of thermal vibrational motions and stringlike jump motions in three-dimensional glass-forming liquids. J. Chem. Phys. 138, 12A514 (2013).CrossRefGoogle ScholarPubMed
Faupel, F., Frank, W., Macht, M-P., Mehrer, H., Naundorf, V., Rätzke, K., Schober, H.R., Sharma, S.K., and Teichler, H.: Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 75, 237 (2003).Google Scholar
Schober, H.R., Gaukel, C., and Oligschleger, C.: Low energy excitations in glasses and melts. Prog. Theor. Phys. Suppl. 126, 67 (1997).CrossRefGoogle Scholar
Oligschleger, C. and Schober, H.R.: Collective jumps in a soft-sphere glass. Phys. Rev. B 59, 811 (1999).Google Scholar
Teichler, H.: Structural dynamics on the us scale in molecular-dynamics simulated, deeply undercooled, glass forming Ni0.5Zr0.5 . J. Non-Cryst. Solids 293, 339 (2001).Google Scholar
Ciamarra, M.P., Pastore, R., and Coniglio, A.: Particle jumps in structural glasses. Soft Matter 12, 358 (2016).CrossRefGoogle ScholarPubMed
Battezzati, L., Riontino, G., Baricco, M., Lucci, A., and Marino, F.A.: DSC study of structural relaxation in metallic glasses prepared with different quenching rates. J. Non-Cryst. Solids 61–62, 877 (1984).CrossRefGoogle Scholar
Pan, J., Chen, Q., Liu, L., and Li, Y.: Softening and dilatation in a single shear band. Acta Mater. 59, 5146 (2011).CrossRefGoogle Scholar
Chaudhari, P. and Turnbull, D.: Structure and properties of metallic glasses. Science 199, 11 (1978).Google Scholar
Daw, M.S. and Baskes, M.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
Suzuki, Y. and Egami, T.: Shear deformation of glassy metals: Breakdown of cauchy relationship and anelasticity. J. Non-Cryst. Solids 75, 361 (1985).Google Scholar
Léonforte, F., Boissière, R., Tanguy, A., Wittmer, J.P., and Barrat, J-L.: Continuum limit of amorphous elastic bodies. III. Three-dimensional systems. Phys. Rev. B 72, 224206 (2005).CrossRefGoogle Scholar
Léonforte, F., Tanguy, A., Wittmer, J.P., and Barrat, J-L.: Inhomogeneous elastic response of silica glass. Phys. Rev. Lett. 97, 055501 (2006).CrossRefGoogle ScholarPubMed
Tsamados, M., Tanguy, A., Goldenberg, C., and Barrat, J-L.: Local elasticity map and plasticity in a model Lennard-Jones glass. Phys. Rev. E 80, 026112 (2009).Google Scholar
Ma, E.: Tuning order in disorder. Nat. Mater. 14, 547 (2015).Google Scholar
Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).CrossRefGoogle ScholarPubMed
Tanaka, H.: Roles of local icosahedral chemical ordering in glass and quasicrystal formation in metallic glass formers. J. Phys.: Condens. Matter 15, L491 (2003).Google Scholar