Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T21:20:09.216Z Has data issue: false hasContentIssue false

Thermal Stability of Atomic Layer Deposited Zr:Al Mixed Oxide Thin Films: An in Situ Transmission Electron Microscopy Study

Published online by Cambridge University Press:  01 July 2005

L.C. Nistor
Affiliation:
National Institute for Materials Physics, Atomistilor 105 bis RO-77125 Magurele-Bucharest, Romania
O. Richard
Affiliation:
Interuniversity MicroElectronics Center, B-3001 Leuven, Belgium
C. Zhao
Affiliation:
Interuniversity MicroElectronics Center, B-3001 Leuven, Belgium
H. Bender
Affiliation:
Interuniversity MicroElectronics Center, B-3001 Leuven, Belgium
G. Van Tendeloo
Affiliation:
Electron Microscopy for Materials Science, University of Antwerp, B-2020 Antwerpen, Belgium
Get access

Abstract

The thermal stability of amorphous Zr:Al mixed oxide films of different composition, produced on (001) silicon wafers by the atomic layer deposition method is studied by transmission electron microscopy during in situ heating experiments. The temperatures at which phase separation and crystallization occur are composition dependent. The crystallization of thick films (55–70 nm), deposited on HF-treated silicon surfaces covered with a 15 cycles Al2O3 layer, results in the formation of cubic ZrO2 and cubic γ–Al2O3. In very thin films (5 nm), deposited on silicon surfaces covered with a 0.5 nm SiO2 thin film, the formation of tetragonal zirconium disilicide (ZrSi2) is observed in the microscope vacuum, at temperatures above 900 °C. This effect depends on the thickness of the as deposited thin film.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wilk, G.D., Wallace, R.M. and Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
2Hubbard, K.J. and Schlom, D.G.: Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11, 2757 (1996).CrossRefGoogle Scholar
3Ho, M-Y., Gong, H., Wilk, G.D., Busch, B.W., Green, M.L., Lin, W.H., See, A., Lahri, S.K., Loomans, M.E., Raisanen, P.I. and Gustafsson, T.: Suppressed crystallization of Hf-based dielectrics by controlled addition of Al2O3 using atomic layer deposition. Appl. Phys. Lett. 81, 4218 (2002).CrossRefGoogle Scholar
4van Dover, R.B., Green, M.L., Manchanda, L., Schneemeyer, L.F. and Siegrist, T.: Composition-dependent crystallization of alternative gate dielectrics. Appl. Phys. Lett. 83, 1459 (2003).CrossRefGoogle Scholar
5Kim, H., McIntyre, P.C. and Saraswat, K.C.: Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82, 106 (2003).CrossRefGoogle Scholar
6Kim, H., Marshall, A., McIntyre, P.C. and Saraswat, K.C.: Crystallization kinetics and microstructure-dependent leakage current behavior of ultrathin HfO2 dielectrics: In situ annealing studies. Appl. Phys. Lett. 84, 2064 (2004).CrossRefGoogle Scholar
7Ushakov, S.V., Navrotsky, A., Yang, Y., Stemmer, S., Kukli, K., Ritala, M., Leskala, M.A., Fejes, P., Demkov, A., Wang, C., Nguyen, B.-Y., Triyoso, D., and Tobin, P.: Crystallization in hafnia- and zirconia-based systems, Phys. Status Solidi B 241, 2268 (2004).CrossRefGoogle Scholar
8Zhao, C., Richard, O., Young, E., Bender, H., Roebben, G., Haukka, S., De Gendt, S., Houssa, M., Carter, R., Tsai, W., Van Der Biest, O. and Heyns, M.: Thermostability of amorphous zirconium aluminate high-k layers. J. Non Cryst. Solids 303, 144 (2002).CrossRefGoogle Scholar
9Kukli, K., Forsgren, K., Aarik, J., Uustare, T., Aidla, A., Niskaen, A., Ritala, M., Leskela, M. and Harsta, A.: Atomic layer deposition of zirconium oxide from zirconium tetraiodite, water and hydrogen peroxide. J. Cryst. Growth 231, 262 (2001).CrossRefGoogle Scholar
10Rosa, E.B.O. da, Morais, J., Pezzi, R.P., Miotti, L. and Baumvol, I.J.R.: Annealing of ZrAlxOy ultra thin films on Si in a vacuum or in O2. J. Electrochem. Soc. 148 G695 (2001).CrossRefGoogle Scholar
11Zhao, C., Richard, O., Bender, H., Caymax, M., De Gendt, S., Heyns, M., Young, E., Roebben, G., Van Der Biest, O. and Haukka, S.: Miscibility of amorphous ZrO2–Al2O3 binary alloys. Appl. Phys. Lett. 80, 2374 (2002).CrossRefGoogle Scholar
12Chen, P.J., Cartier, E., Carter, R.J., Kauerauf, T., Zhao, C., Petry, J., Cosnier, V., Xu, Z., Kerber, A., Tsai, W., Young, E., Kubicek, S., Caymax, M., Vandervorst, W., De Gendt, S., Heyns, M., Copel, M., Besling, W.F.A., Bajolet, P., and Maes, J.: The thermal stability of Zr-aluminate-based high-k gate stacks, in VLSI Technology Digest of Technical Papers 2002 Symposium (IEEE), Honolulu, Pull, Wilderhehr and Gaithersburg, MD 20877, USA, pp. 192193.Google Scholar
13Pétry, J., Richard, O., Vandervorst, W., Conard, T., Chen, J. and Cosnier, V.: Effect of N2 annealing on AlZrO oxide. J. Vac. Sci. Technol. A 21, 1482 (2003).CrossRefGoogle Scholar
14van Dover, R.B., Lang, D.V., Green, M.L. and Manchanda, L.: Crystallization kinetics in amorphous (Zr0.62Al0.38)O1.8 thin films. J. Vac. Sci. Technol. A 19, 2779 (2001).CrossRefGoogle Scholar
15Ghica, C., Nistor, L., Bender, H., Steegen, A., Lauwers, A., Maex, K. and Van Landuyt, J.: In situ TEM study of the silicidation process in Co thin films on patterned (001) Si substrates. J. Mater. Res. 16, 701 (2001).CrossRefGoogle Scholar
16Teodorescu, V., Nistor, L., Bender, H., Steegen, A., Lauwers, A., Maex, K. and Van Landuyt, J.: In situ transmission-electron-microscopy study of Ni silicide phases formed on (001) Si active lines. J. Appl. Phys. 90, 167 (2001).CrossRefGoogle Scholar
17Puurunen, R.L., Vandervorst, W., Besling, W., Richard, O., Bender, H., Conard, T., Zhao, C., Delabie, A., Caymax, M., Degendt, S., Heyns, M., Viitanen, M.M., de Ridr, M., Brongersma, H.H., Tamminga, Y., Dao, T., de Win, T., Verheijen, M., Kaiser, M. and Tuominen, M.: Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: growth mode modelling and transmission electron microscopy. J. Appl. Phys. 96, 4878 (2004).CrossRefGoogle Scholar
18 ASTM-File No. 27-977..Google Scholar
19 ASTM-File No. 10-427..Google Scholar
20 ASTM-File No. 10-236..Google Scholar
21Richard, O., Bender, H., Houssa, M. and Zhao, C.: Characterization of ALCVD ZrO2 thin films by TEM. Inst. Phys. Conf. Ser. 169, 407 (2001).Google Scholar
22Afanas’ev, V., Stesmans, A., Mrstik, B.J. and Zhao, C.: Impact of annealing-induced compaction on electronic properties of atomic-layer-deposited Al2O3. Appl. Phys. Lett. 81, 1678 (2002).CrossRefGoogle Scholar
23Nistor, L., Richard, O., Zhao, C., Bender, H., Stesmans, A. and Van Tendeloo, G.: A microstructural study of the thermal stability of atomic layer deposited Al2O3 thin films. Inst. Phys. Conf. Ser. 180, 397 (2003).Google Scholar
24Copel, M., Gribelyuk, M. and Gusev, E.: Structure and stability of ultrathin zirconium oxide layers on Si (001). Appl. Phys. Lett. 76, 436 (2000).CrossRefGoogle Scholar
25Jeon, T.S., White, J.M. and Kwong, D.L.: Thermal stability of ultrathin ZrO2 films prepared by chemical vapour deposition on Si (100). Appl. Phys. Lett. 78, 368 (2001).CrossRefGoogle Scholar
26Tromp, R., Rubloff, G.W., Balk, P., Goues, F.K. Le and van Loenen, E.J.: High-temperature SiO2 decomposition at the SiO2/Si interface. Phys. Rev. Lett. 55, 2332 (1985).CrossRefGoogle ScholarPubMed
27Miyata, N., Watanabe, H. and Ichikawa, M.: Thermal decomposition of ultrathin Si oxide layer around a Si (001) – (2 x 1) window. Phys. Rev. Lett. 84, 1043 (2000).CrossRefGoogle ScholarPubMed
28Stemmer, S.: Thermodynamic considerations in the stability of binary oxides for alternative gate dielectrics in complementary metal-oxide-semiconductors. J. Vac. Sci. Technol. B 22, 792 (2004).Google Scholar