Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T23:49:49.789Z Has data issue: true hasContentIssue false

Thermal stability of nanocrystalline WC–Co powder synthesized by using mechanical milling at low temperature

Published online by Cambridge University Press:  31 January 2011

Jianhong He
Affiliation:
Department of Chemical and Biochemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697–2575
Leoanardo Ajdelsztajn
Affiliation:
Department of Chemical and Biochemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697–2575
Enrique J. Lavernia
Affiliation:
Department of Chemical and Biochemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697–2575
Get access

Abstract

Nanostructured WC–18% Co powder was synthesized by using cryogenic mechanical milling, and the thermal stability of the nanostructured powder was investigated in detail. The results indicated that the as-synthesized WC–18% Co powder had an average WC particle size of 25 nm. Growth of WC particles occurred above 873 K; however, the average WC particle size remained smaller than 100 nm in the powder isothermally heated for 4 h at 1273 K. Thermal exposure in air at T < 623 K did not result in significant oxidation of the cryomilled powder. The thermal exposure did promote the formation of WO2 and WO3 oxides. The Co6W6C phase was detected by x-ray diffraction in the powder heated in nitrogen at 1273 K, and the phases associated with decarburization of WC, such as W2C, W3C phases, were not observed. With increasing temperature, the dissolution of W and C elements in the Co matrix led to a gradual increase in {111} crystallographic plane spacing, eventually leading to the formation of an amorphous phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Beck, P.A., Kremer, J.C., Demer, L.J., and Holzworth, M.L., Trans. AIME 175, 372 (1948).Google Scholar
2.Burke, J.E., Trans. AIME 180, 73 (1949).Google Scholar
3.Eckert, J., Holzer, J.C., and Johnson, W.L., J. Appl. Phys. 73, 131 (1993).Google Scholar
4.Krill, C.E., Klein, R., Janes, S., and Birringer, R., Mater. Sci. Forum 179–181, 443 (1995).CrossRefGoogle Scholar
5.Gao, Z. and Fultz, B., NanoStruct. Mater. 2, 231 (1993).CrossRefGoogle Scholar
6.Bansal, C., Gao, Z., and Fultz, B., NanoStruct. Mater. 5, 327 (1995).CrossRefGoogle Scholar
7.Knauth, P., Charai, A., and Gas, P., Scripta Metall. Mater. 28, 325 (1993).Google Scholar
8.Hofler, H.J. and Averback, R.S., Scripta Metall. Mater. 24, 2401 (1990).CrossRefGoogle Scholar
9.Boylan, K., Ostrander, D., Erb, U., Palumbo, G., and Aust, K.T., Scripta Metall. Mater. 25, 2711 (1991).CrossRefGoogle Scholar
10.Burke, J.E. and Turnbull, D., Prog. Metal. Phys. 3, 220 (1952).Google Scholar
11.Atkinson, H.V., Acta Metall. 38, 469 (1988).CrossRefGoogle Scholar
12.Suryanarayana, C., Int. Mater. Rev. 40, 41 (1995).Google Scholar
13.Weissmuller, J., in Synthesis and Processing of Nanocrystalline Powder, edited by Bourrel, D.L. (TMS, Warrendale, PA, 1996), pp. 319.Google Scholar
14.Eckert, J., Holzer, J.C., Krill, C.E. III, and Johnson, W.L., J. Mater. Res. 7, 1751 (1992).Google Scholar
15.Malow, T.R. and Koch, C.C., Acta Mater. 45, 2177 (1997).CrossRefGoogle Scholar
16.Lau, M.L., Jiang, H.G., Nuchter, W., and Lavernia, E.J., Phys. Status Solidi A 166, 257 (1998).Google Scholar
17.Vandermeer, R.A. and Hu, H., Acta Metall. Mater. 42, 3071 (1994).Google Scholar
18.Scherrer, P., Nachr. Ges. Wiss. Goettingen, Math.–Phys. K1.2, 98 (1918).Google Scholar
19.Klug, H.P. and Alexander, L.E., in X-ray Diffraction Procedures (John Wiley & Sons, New York, 1974), p. 643.Google Scholar
20.Jeffery, J.W., in Methods in X-ray Crystallography (John Wiley & Sons, New York, 1974), p. 643.Google Scholar
21.Suryanarayana, C. and Norton, M.G., in X-ray Diffraction—A Practical Approach (Plenum Press, New York, 1998), pp. 207218.Google Scholar
22.de Keijser, Th.H., Langford, J.I., Mittemeijer, E.J., and Vogels, A.B.P., J. Appl. Cryst. 15, 308 (1982).Google Scholar
23.Rangaswamy, S. and Herman, H., in Advances in Thermal Spraying (Pergamon Press, New York 1986), pp. 101110.Google Scholar
24.Tu, D., Chang, S., Chao, C., and Lin, C., J. Vac. Sci. Technol. A3, 2479 (1985).Google Scholar
25.Moskowitz, L. and Trelewicz, K., J. Therm. Spray. Technol 6, 294 (1997).CrossRefGoogle Scholar
26.Nolan, D.J. and Samandi, M., J. Therm. Spray. Technol. 6, 422 (1997).Google Scholar
27.de Villiers Lovelock, H.L., Richer, P.W., Benson, J.M., and Young, P.M., J. Therm. Spray. Technol. 7, 97 (1998).CrossRefGoogle Scholar
28.Li, C.J., Ohmori, A., and Harada, Y., J. Mater. Sci. 31, 785 (1996).Google Scholar
29.Subrahmanyam, J., Srivastava, M.P., and Sivakumar, R., Mater. Sci. Eng. 84, 209 (1986).Google Scholar
30.Nerz, J.E., Kushner, B.A., and Rotolico, A.J., J. Therm. Spray. Technol. 1, 147 (1992).CrossRefGoogle Scholar
31.Karimi, A., Verdon, Ch., and Barbezat, G., Surf. Coat. Technol 57, 81 (1993).Google Scholar
32.Li, C.J., Ohmori, A., and Harada, Y., J. Therm. Spray. Technol. 5, 69 (1996).CrossRefGoogle Scholar
33.Jarosinski, W.J., Gruninger, M.F., and Londry, C.H., in Thermal Spray Coatings: Research Design and Applications, edited by Berndt, C.C. and Bernecki, T.F. (ASM International, 1993), pp. 153157.Google Scholar
34.Niemi, K., Vuoristo, P., and Mantyla, T., Barbezat, G., and Nicoll, A.R., in Thermal Spray: International Advances in Coatings Technology, edited by Berndt, C.C. (ASM International, 1992), pp. 655689.Google Scholar
35.de Villiers Lovelock, H.L., J. Therm. Spray. Technol. 7, 357 (1998).CrossRefGoogle Scholar
36.Ramnath, V. and Jayaraman, N., Mater. Sci. Technol. 5, 382 (1989).Google Scholar
37.Kim, H.J., Kweon, Y.G., and Chang, R.W., J. Therm. Spray. Technol. 3, 169 (1994).CrossRefGoogle Scholar
38.Varacalle, D.J. Jr., Acosta, E., Figert, J., Syma, M., Worthington, J., and Carrillo, D., in Thermal Spray: Practical Solutions for Engineering Problems, edited by Berndt, C.C. (ASM International, 1996), pp. 699707.Google Scholar
39.Nerz, J.E., Kushner, B.A., and Rotolico, A.J., in Protective Coatings: Processing and Characterization, edited by Yazici, R.M. (The Minerals, Metals and Materials Society, 1990), pp. 133143.Google Scholar
40.Hwang, S.Y., Seong, G.B., and Kim, M.C., in Thermal Spray: Practical Solutions for Engineering Problems, edited by Berndt, C.C. (ASM International, 1996), pp. 107112.Google Scholar
41.Wayne, S.F. and Sampath, S., J. Therm. Spray. Technol. 1, 307 (1992).Google Scholar
42.Nutting, J., Guilemay, J.M., and Dong, Z., Mater. Sci. Technol. 11, 961 (1995).CrossRefGoogle Scholar
43.He, J., Ice, M., Dallek, S., and Lavernia, E.J., Metall. Mater. Trans. A 31A, 541 (2000).CrossRefGoogle Scholar
44.Mantyla, T.A., Niemi, K.J., Vuoristo, P.M.J., Barbezat, G., and Nicoll, , in Proceedings of Second Plasma-Technik Symposium, Vol. 1, edited by Blum-Sandmeier, S., Eschnauer, H., Huber, P., and Nicoll, A. (Sulzer Metco AG, Wohlen, Switzerland, 1991), pp. 287297.Google Scholar
45.Barbezat, G., Nicoll, A.R., and Sickinger, A., Wear 162–164, 529 (1993).CrossRefGoogle Scholar
46.Slavin, T.P. and Nerz, J., in Thermal Spray Research and Applications, edited by Bernecki, T.F. (ASM International, 1991), pp. 159165.Google Scholar
47.Usmani, S., Sampath, S., and Herman, H., in Thermal Spray Processing of Nanoscale Materials—A Conference Report with Extended Abstracts, edited by Berndt, C.C. and Lavernia, E.J., J. Therm. Spray Technol. 7, 429 (1998).Google Scholar
48.Stewart, D.A., Shipway, P.H., and McCartney, D.G., Wear 225–229, 789 (1999).Google Scholar
49.Vuoristo, P., Niemi, K., Makela, A., and Mantyla, T., in Thermal Spray: Research, Design and Applications, edited by Berndt, C.C., and Bernecki, T.F. (ASM International, 1993), pp. 173178.Google Scholar
50.Wayne, S.F. and Sampath, S., J. Therm. Spray Technol. 1, 307 (1992).Google Scholar
51.Strutt, P.R., in Thermal Spray Processing of Nanoscale Materials—A Conference Report with Extended Abstracts, edited by Berndt, C.C. and Lavernia, E.J., J. Therm. Spray Technol. 7, 413 (1998).Google Scholar
52.Stewart, D.A., Shipway, P.H., and McCartney, D.G., Acta Mater. 48, pp. 15931604.Google Scholar
53.Yang, J.H., Cemented Carbide 2, 17 (1984).Google Scholar
54.Kudryavteva, V.I., Chaporova, I.N., Soviet Powder Metallurgy and Metal Ceramics 26, 396 (1987).Google Scholar
55.Jia, K., Fischer, T.E., and Gallois, B., Nanostructured Materials 10, 875891 (1998).CrossRefGoogle Scholar
56.Langford, J.I., J. Appl. Crystallogr. 11, 10 (1978).CrossRefGoogle Scholar
57.Nagender Naidu, S.V., Sriramamurthy, A.M., and Pama Rao, P., in Binary Alloy Phase Diagrams, 2nd ed., edited by Massalski, T.B. (ASM International, Materials Park, OH, 1990), p. 1258.Google Scholar
58.Schedler, W., Hartmetall fur den Praktoker (VDI-Verlag, Duesseldorf, 1988), pp. 529 (in German).Google Scholar
59.Binnewies, M. and Milke, E., Thermochemical Data of Elements and Compounds, (Wiley-VCH, Verlag GmbH, D-69469 Weinheim, 1999), p. 245, 408, 763, 775.Google Scholar
60.He, J., Ice, M., Peters, M., and Lavernia, E.J., Influence of fuelchemistry, fueloxygen ratios, and particle size on near nanostructured WC-18% Co coatings. (Fifth International Conference on Nanostructured Materials [Nano 2000], August 20–25, 2000, Sendai, Japan).Google Scholar
61.Khan, M.S.A. and Clyne, T.W., in Thermal Spray: Practical Solutions for Engineering Problems, edited by Berndt, C.C. (ASM International, Materials Park, Ohio, 1996), pp. 113122.Google Scholar
62.Aroto, P., Bartha, L., Porat, R., Berger, S., and Rosen, A., Nanostruct. Mater. 10, pp. 245–255.Google Scholar
63.Subrahmanyan, J., Srivastava, M.P., and Sivakumar, R., Mater. Sci. Eng. A 84A, 209 (1986).Google Scholar
64.Koch, C.C., Nanostruct. Mater. 9, 13 (1997).Google Scholar
65.Jenkins, I. and Wood, J.V., Powder Metallurgy: An Overview (The Institute of Metals, London, 1991), p. 320.Google Scholar
66.McCandlish, L.E., Kear, B.H., and Kim, B.K., Nanostruct. Mater. 1, 119 (1992).Google Scholar
67.Fang, Z. and Eason, J.W., in Proceedings of the 13th International Plansee Seminar, Study of Nanostructured WC-Co Composites (Reutte, Austria, 1993), p. 625.Google Scholar
68.Porat, R., Berger, S., and Rosen, A., in Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, D.L. (TMS, Warrendale, PA, 1996), p. 217.Google Scholar
69.Porat, R., Berger, S., and Rosen, A., in Proceedings of the 14th International Plansee Seminar, edited by Kneringer, G., Rodhammer, P., and Wilhartitz, P. (Reutte, Austria, 1997), p. 582.Google Scholar
70.Aroto, P., Bartha, L., Porat, R., Berger, S., and Rosen, A., Nanostruct. Mater. 10, 245 (1998).Google Scholar
71.Goren-Muginstein, G.R., Berger, S., and Rosen, A., Nanostruct. Mater. 10, 795 (1998).Google Scholar