Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T19:31:28.209Z Has data issue: false hasContentIssue false

Thermal stability study of transition metal perovskite sulfides

Published online by Cambridge University Press:  15 November 2018

Shanyuan Niu
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
JoAnna Milam-Guerrero
Affiliation:
Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
Yucheng Zhou
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
Kevin Ye
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
Boyang Zhao
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
Brent C. Melot
Affiliation:
Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
Jayakanth Ravichandran*
Affiliation:
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA; and Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
*
a)Address all correspondence to this author. e-mail: jayakanr@usc.edu
Get access

Abstract

Transition metal perovskite chalcogenides, a class of materials with rich tunability in functionalities, are gaining increased attention as candidate materials for renewable energy applications. Perovskite oxides are considered excellent n-type thermoelectric materials. Compared to oxide counterparts, we expect the chalcogenides to possess more favorable thermoelectric properties such as lower lattice thermal conductivity and smaller band gap, making them promising material candidates for high temperature thermoelectrics. Thus, it is necessary to study the thermal properties of these materials in detail, especially thermal stability, to evaluate their potential. In this work, we report the synthesis and thermal stability study of five compounds, α-SrZrS3, β-SrZrS3, BaZrS3, Ba2ZrS4, and Ba3Zr2S7. These materials cover several structural types including distorted perovskite, needle-like, and Ruddlesden–Popper phases. Differential scanning calorimeter and thermogravimetric analysis measurements were performed up to 1200 °C in air. Structural and chemical characterizations such as X-ray diffraction, Raman spectroscopy, and energy dispersive analytical X-ray spectroscopy were performed on all the samples before and after the heat treatment to understand the oxidation process. Our studies show that perovskite chalcogenides possess excellent thermal stability in air at least up to 550 °C.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sun, Y-Y., Agiorgousis, M.L., Zhang, P., and Zhang, S.: Chalcogenide perovskites for photovoltaics. Nano Lett. 15, 581 (2015).CrossRefGoogle ScholarPubMed
Körbel, S., Marques, M.A.L., and Botti, S.: Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J. Mater. Chem. C 4, 3157 (2016).CrossRefGoogle Scholar
Wang, H., Gou, G., and Li, J.: Ruddlesden–Popper perovskite sulfides A3B2S7: A new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy 22, 507 (2016).CrossRefGoogle Scholar
Ju, M-G., Dai, J., Ma, L., and Zeng, X.C.: Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv. Energy Mater. 48, 1700216 (2017).CrossRefGoogle Scholar
Nijamudheen, A. and Akimov, A.V.: Criticality of symmetry in rational design of chalcogenide perovskites. J. Phys. Chem. Lett. 9, 248 (2017).CrossRefGoogle ScholarPubMed
Kuhar, K., Crovetto, A., Pandey, M., Thygesen, K.S., Seger, B., Vesborg, P.C.K., Hansen, O., Chorkendorff, I., and Jacobsen, K.W.: Sulfide perovskites for solar energy conversion applications: Computational screening and synthesis of the selected compound LaYS3. Energy Environ. Sci. 10, 2579 (2017).CrossRefGoogle Scholar
Meng, W., Saparov, B., Hong, F., Wang, J., Mitzi, D.B., and Yan, Y.: Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28, 821 (2016).CrossRefGoogle Scholar
Perera, S., Hui, H., Zhao, C., Xue, H., Sun, F., Deng, C., Gross, N., Milleville, C., Xu, X., Watson, D.F., Weinstein, B., Sun, Y-Y., Zhang, S., and Zeng, H.: Chalcogenide perovskites—An emerging class of ionic semiconductors. Nano Energy 22, 129 (2016).CrossRefGoogle Scholar
Niu, S., Huyan, H., Liu, Y., Yeung, M., Ye, K., Blankemeier, L., Orvis, T., Sarkar, D., Singh, D.J., Kapadia, R., and Ravichandran, J.: Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017).CrossRefGoogle ScholarPubMed
Gross, N., Sun, Y-Y., Perera, S., Hui, H., Wei, X., Zhang, S., Zeng, H., and Weinstein, B.A.: Stability and band-gap tuning of the chalcogenide perovskite BaZrS3 in Raman and optical investigations at high pressures. Phys. Rev. Appl. 8, 044014 (2017).CrossRefGoogle Scholar
Wang, J. and Kovnir, K.: Giant anisotropy detected. Nat. Photon. 12, 382 (2018).CrossRefGoogle Scholar
He, J., Liu, Y., and Funahashi, R.: Oxide thermoelectrics: The challenges, progress, and outlook. J. Mater. Res. 26, 1762 (2011).CrossRefGoogle Scholar
Muta, H., Kurosaki, K., and Yamanaka, S.: Thermoelectric properties of rare earth doped SrTiO3. J. Alloys Compd. 350, 292 (2003).CrossRefGoogle Scholar
Ohta, H., Sugiura, K., and Koumoto, K.: Recent progress in oxide thermoelectric materials: p-type Ca3CO4O9 and n-type SrTiO3. Inorg. Chem. 47, 8429 (2008).CrossRefGoogle ScholarPubMed
Weber, W.J., Griffin, C.W., and Bates, J.L.: Effects of cation substitution on electrical and thermal transport properties of YCrO3 and LaCrO3. J. Am. Ceram. Soc. 70, 265 (1987).CrossRefGoogle Scholar
Ohtaki, M., Koga, H., Tokunaga, T., Eguchi, K., and Arai, H.: Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, in, Sn, Sb, Pb, Bi). J. Solid State Chem. 120, 105 (1995).CrossRefGoogle Scholar
Okuda, T., Nakanishi, K., Miyasaka, S., and Tokura, Y.: Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0 < x < 0.1). Phys. Rev. B 63, 113104 (2001).CrossRefGoogle Scholar
Yasukawa, M. and Murayama, N.: A promising oxide material for high-temperature thermoelectric energy conversion: Ba1−xSrxPbO3 solid solution system. Mater. Sci. Eng., B 54, 64 (1998).CrossRefGoogle Scholar
Niu, S., Joe, G., Zhao, H., Zhou, Y., Orvis, T., Huyan, H., Salman, J., Mahalingam, K., Urwin, B., Wu, J., Liu, Y., Tiwald, T.E., Cronin, S.B., Howe, B.M., Mecklenburg, M., Haiges, R., Singh, D.J., Wang, H., Kats, M.A., and Ravichandran, J.: Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photon. 12, 392 (2018).CrossRefGoogle Scholar
Niu, S., Zhao, H., Zhou, Y., Huyan, H., Zhao, B., Wu, J., Cronin, S.B., Wang, H., and Ravichandran, J.: Mid-wave and long-wave infrared linear dichroism in a hexagonal perovskite chalcogenide. Chem. Mater. 30, 4897 (2018).CrossRefGoogle Scholar
Niu, S., Sarkar, D., Williams, K., Zhou, Y., Li, Y., Bianco, E., Huyan, H., Cronin, S.B., McConney, M.E., Haiges, R., Jaramillo, R., Singh, D.J., Tisdale, W.A., Kapadia, R., and Ravichandran, J.: Optimal bandgap in a 2D Ruddlesden–Popper perovskite chalcogenide for single-junction solar cells. Chem. Mater. 30, 4882 (2018).CrossRefGoogle Scholar
Brehm, J.A., Bennett, J.W., Schoenberg, M.R., Grinberg, I., and Rappe, A.M.: The structural diversity of ABS3 compounds with d 0 electronic configuration for the B-cation. J. Chem. Phys. 140, 224703 (2014).CrossRefGoogle Scholar
Lelieveld, R. and Ijdo, D.J.W.: Sulphides with the GdFeO3 structure. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36, 2223 (1980).CrossRefGoogle Scholar
Clearfield, A.: The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallographica 16, 135 (1963).CrossRefGoogle Scholar
Hahn, H. and Mutschke, U.: Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Anorg. Allg. Chem. 288, 269 (1957).CrossRefGoogle Scholar
Huster, J.: Die Kristallstruktur von BaTiS3. Z. Naturforsch. B 35, 775 (1980).CrossRefGoogle Scholar
Okai, B., Takahashi, K., Saeki, M., and Yoshimoto, J.: Preparation and crystal structures of some complex sulphides at high pressures. MRS Bull. 23, 1575 (1988).CrossRefGoogle Scholar
Tranchitella, L.J., Chen, B.H., Fettinger, J.C., and Eichhorn, B.W.: Structural evolutions in the Sr1−xBaxZrSe3 series. J. Solid State Chem. 130, 20 (1997).CrossRefGoogle Scholar
Aleksandrov, K.S. and BartolomÉ, J.: Structural distortions in families of perovskite-like crystals. Phase Transitions 74, 255 (2001).CrossRefGoogle Scholar
Lee, C-S., Kleinke, K.M., and Kleinke, H.: Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 7, 1049 (2005).CrossRefGoogle Scholar
Bennett, J.W., Grinberg, I., and Rappe, A.M.: Effect of substituting of S for O: The sulfide perovskite BaZrS3 investigated with density functional theory. Phys. Rev. B 79, 235115 (2009).CrossRefGoogle Scholar
Tranchitella, L.J., Fettinger, J.C., Dorhout, P.K., Van Calcar, P.M., and Eichhorn, B.W.: Commensurate columnar composite compounds: Synthesis and structure of Ba15Zr14Se42 and Sr21Ti19Se57. J. Am. Chem. Soc. 120, 7639 (1998).CrossRefGoogle Scholar
Gourdon, O., Petricek, V., and Evain, M.: A new structure type in the hexagonal perovskite family; structure determination of the modulated misfit compound Sr9/8TiS3. Acta Crystallographica B56, 409 (2000).CrossRefGoogle Scholar
Gourdon, O., Jeanneau, E., Evain, M., Jobic, S., Brec, R., Koo, H.J., and Whangbo, M.H.: Influence of the metal–metal sigma bonding on the structures and physical properties of the hexagonal perovskite-type sulfides Sr9/8TiS3, Sr8/7TiS3, and Sr8/7[Ti6/7Fe1/7]S3. J. Solid State Chem. 162, 103 (2001).CrossRefGoogle Scholar
Zhang, Y., Shimada, T., Kitamura, T., and Wang, J.: Ferroelectricity in Ruddlesden–Popper chalcogenide perovskites for photovoltaic application: The role of tolerance factor. J. Phys. Chem. Lett. 8, 5834 (2017).CrossRefGoogle ScholarPubMed
Quintard, P.E., Barberis, P., Mirgorodsky, A.P., and Merle-Mejean, T.: Comparative lattice-dynamical study of the Raman spectra of monoclinic and tetragonal phases of zirconia and hafnia. J. Am. Ceram. Soc. 85, 1745 (2002).CrossRefGoogle Scholar
Dawson, P., Hargreave, M.M., and Wilkinson, G.R.: Polarized i.r. reflection, absorption and laser Raman studies on a single crystal of BaSO4. Spectrochim. Acta, Part A 33, 83 (1977).CrossRefGoogle Scholar
Kamishima, O., Hattori, T., Ohta, K., Chiba, Y., and Ishigame, M.: Raman scattering of single-crystal SrZrO3. J. Phys.: Condens. Matter 11, 5355 (1999).Google Scholar