Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T08:52:47.391Z Has data issue: false hasContentIssue false

Thermally stable dielectric properties of 0.5Na0.5Bi0.5TiO3–0.4SrTiO3–0.1BiFeO3 ceramics at high temperature

Published online by Cambridge University Press:  16 November 2020

Xi Wu
Affiliation:
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai201620, China
Hongbo Liu*
Affiliation:
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai201620, China
Jianguo Chen*
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
*
a)Address all correspondence to these authors. e-mail: bohongliu@gmail.com
Get access

Abstract

Na0.5Bi0.5TiO3-based ceramics have been paid great attention as Pb-free piezoelectric and electrical energy storage materials. Here, adding 10 mol% BiFeO3 in Na0.5Bi0.5TiO3–SrTiO3 binary system, 0.5Na0.5Bi0.5TiO3–0.4SrTiO3–0.1BiFeO3 ceramics were prepared by a conventional solid-state reaction method. Dielectric measurements reflected a near-plateau dielectric response at high temperature, e.g., the mid-dielectric permittivity of 2052 with the variation within ±10% from 57 to 371 °C and within ±15% from 54 to 371 °C for the ceramic sintered at 1100 °C. At a moderate electric field of 70 kV/cm, a capacitor made by the ceramic has an electrical energy storage density of 0.95 J/cm3, while the polarization has yet saturated at the moderate electric field. These results suggest that 0.5Na0.5Bi0.5TiO3–0.4SrTiO3–0.1BiFeO3 ceramic is a promising novel material with thermally stable dielectric permittivity and high electrical energy storage property for applications in high-temperature electronics.

Type
Invited Paper
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, H. and Dkhil, B.: Effect of resistivity ratio on energy storage and dielectric relaxation properties of 0-3 dielectric composites. J. Mater. Sci. 52, 6074 (2017).CrossRefGoogle Scholar
Watson, J. and Castro, G.: A review of high-temperature electronics technology and applications. J. Mater. Sci.: Mater. Electron. 26, 9226 (2015).Google Scholar
Bultitude, J., McConnell, J., and Shearer, C.: High temperature capacitors and transient liquid phase interconnects for Pb-solder replacement. J. Mater. Sci.: Mater. Electron. 26, 9236 (2015).Google Scholar
Zeb, A. and Milne, S.J.: High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J. Mater. Sci.: Mater. Electron. 26, 9243 (2015).Google Scholar
Hao, J., Li, W., Zhai, J., and Chen, H.: Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng., R 135, 1 (2019).CrossRefGoogle Scholar
Liu, G., Wang, Z., Zhang, L., Shi, W., Jing, J., Chen, Y., Liu, H., and Yan, Y.: Phase segregation and dielectric, ferroelectric, and piezoelectric properties of MgO-doped NBT-BT lead-free ferroelecric ceramics. Mater. Res. Express 5, 036305 (2018).CrossRefGoogle Scholar
Yang, L., Kong, X., Li, F., Hao, H., Cheng, Z., Liu, H., Li, J.-F., and Zhang, S.: Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72 (2019).CrossRefGoogle Scholar
Chen, P., Zhang, L., Cai, J., Wang, Z., Shi, W., Jing, J., Wei, F., Liu, G., Yan, Y., Liu, H., and Jin, L.: Effect of Dy2O3 content on the dielectric, ferroelectric, and energy storage properties of lead-free 0.5Na0.5Bi0.5TiO3-0.5SrTiO3 bulk ceramics. J. Mater. Sci.: Mater. Electron. 30, 13556 (2019).Google Scholar
Dittmer, R., Anton, E.-M., Jo, W., Simons, H., Daniels, J.E., Hoffman, M., Pokorny, J., Reaney, I.M., and Rödel, J.: A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3. J. Am. Ceram. Soc. 95, 3519 (2012).CrossRefGoogle Scholar
Zeb, A., ullah Jan, S., Bamiduro, F., Hall, D.A., and Milne, S.J.: Temperature-stable dielectric ceramics based on Na0.5Bi0.5TiO3. J. Eur. Ceram. Soc. 38, 1548 (2018).CrossRefGoogle Scholar
Han, F., Deng, J., Liu, X., Yan, T., Ren, S., Ma, X., Liu, S., Peng, B., and Liu, L.: High-temperature dielectric and relaxation behavior of Yb-doped Bi0.5Na0.5TiO3 ceramics. Ceram. Int. 43, 5564 (2017).CrossRefGoogle Scholar
Shi, J., Fan, H., Liu, X., Ma, Y., and Li, Q.: Bi deficiencies induced high permittivity in lead-free BNBT-BST high-temperature dielectrics. J. Alloys Compd. 627, 463 (2015).CrossRefGoogle Scholar
Rout, D., Moon, K.-S., Kang, S.-J.L., and Kim, I.W.: Dielectric and Raman scattering studies of phase transitions in the (100-x) Na0.5Bi0.5TiO3-xSrTiO3 system. J. Appl. Phys. 108, 084102 (2010).CrossRefGoogle Scholar
He, H., Lu, X., Li, M., Wang, Y., Li, Z., Lu, Z., and Lu, L.: Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3-SrTiO3 ceramics. J. Mater. Chem. C 8, 2411 (2020).CrossRefGoogle Scholar
Hiruma, Y., Imai, Y., Watanabe, Y., Nagata, H., and Takenaka, T.: Large electrostrain near the phase transition temperature of (Bi0.5Na0.5) TiO3-SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 92, 262904 (2008).CrossRefGoogle Scholar
Zhu, Y., Zhang, Y., Xie, B., Fan, P., Marwat, M.A., Ma, W., Wang, C., Yang, B., Xiao, J., and Zhang, H.: Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3 lead-free piezoceramics. Ceram. Int. 44, 7851 (2018).CrossRefGoogle Scholar
Yan, F., Yang, H., Lin, Y., and Wang, T.: Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg. Chem. 56, 13510 (2017).CrossRefGoogle ScholarPubMed
Cui, C., Pu, Y., Gao, Z., Wan, J., Guo, Y., Hui, C., Wang, Y., and Cui, Y.: Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J. Alloys Compd. 711, 319 (2017).CrossRefGoogle Scholar
Ang, C. and Yu, Z.: High, purely electrostrictive strain in lead-free dielectrics. Adv. Mater. 18, 103 (2006).CrossRefGoogle Scholar
Li, J., Li, F., Xu, Z., and Zhang, S.: Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30, 1802155 (2018).CrossRefGoogle ScholarPubMed
Pan, H., Li, F., Liu, Y., Zhang, Q., Wang, M., Lan, S., Zheng, Y., Ma, J., Gu, L., Shen, Y., Yu, P., Zhang, S., Chen, L.-Q., Lin, Y.-H., and Nan, C.-W.: Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578 (2019).CrossRefGoogle ScholarPubMed
Liu, H.: High dielectric permittivity of BiFeO3-SrTiO3-CaTiO3 ternary solid solution ceramics. Ceram. Int. 46, 8255 (2020).CrossRefGoogle Scholar
Liu, G., Jiang, W., Zhang, L., Cai, J., Wang, Z., Liu, K., Liu, X., Chen, Y., Liu, H., and Yan, Y.: Effects of sintering temperature and KBT content on microstructure and electrical properties of (Bi0.5Na0.5) TiO3-BaTiO3-(Bi0.5K0.5) TiO3 Pb-free ceramics. Ceram. Int. 44, 9303 (2018).CrossRefGoogle Scholar
Aksel, E., Erdem, E., Jakes, P., Jones, J.L., and Eichel, R.-A.: Defect structure and materials “hardening” in Fe2O3-doped [Bi0.5Na0.5] TiO3 ferroelectrics. Appl. Phys. Lett. 97, 012903 (2010).CrossRefGoogle Scholar
Cho, J.-H., Park, J.-S., Kim, S.-W., Jeong, Y.-H., Yun, J.-S., Park, W.-I., Hong, Y.-W., and Paik, J.-H.: Ferroelectric properties and core shell domain structures of Fe-modified 0.77Bi0.5Na0.5TiO3-0.23SrTiO3 ceramics. J. Eur. Ceram. Soc. 37, 3313 (2017).CrossRefGoogle Scholar
Krauss, W., Schütz, D., Mautner, F.A., Feteira, A., and Reichmann, K.: Piezoelectric properties and phase transition temperatures of the solid solution of (1-x) (Bi0.5Na0.5) TiO3-xSrTiO3. J. Eur. Ceram. Soc. 30, 1827 (2010).CrossRefGoogle Scholar
Dorcet, V., Marchet, P., and Trolliard, G.: Structural and dielectric studies of the Na0.5Bi0.5TiO3-BiFeO3 system. J. Eur. Ceram. Soc. 27, 4371 (2007).CrossRefGoogle Scholar
Liu, H. and Yang, X.: Structural, dielectric, and magnetic properties of BiFeO3-SrTiO3 solid solution ceramics. Ferroelectrics 500, 310 (2016).CrossRefGoogle Scholar
Li, L., Liu, H., Wen, G., and Liu, G.: Structural evolution and dielectric response of (1-x) BiFeO3-xSrTiO3 ceramics. Ceram. Int. 44, S69 (2018).CrossRefGoogle Scholar
Chen, J., Cheng, J., Guo, J., Cheng, Z., Wang, J., Liu, H., and Zhang, S.: Excellent thermal stability and aging behaviors in BiFeO3-BaTiO3 piezoelectric ceramics with rhombohedral phase. J. Am. Ceram. Soc. 103, 374 (2020).CrossRefGoogle Scholar
Liu, H. and Yang, X.: A brief review on perovskite multiferroics. Ferroelectrics 507, 69 (2017).CrossRefGoogle Scholar
Liu, L., Shi, D., Knapp, M., Ehrenberg, H., Fang, L., and Chen, J.: Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3-SrTiO3-(K0.5Na0.5) NbO3 solid solutions. J. Appl. Phys. 116, 184104 (2014).CrossRefGoogle Scholar
Liu, L., Knapp, M., Ehrenberg, H., Fang, L., Schmitt, L.A., Fuess, H., Hoelzel, M., and Hinterstein, M.: The phase diagram of K0.5Na0.5NbO3-Bi1/2Na1/3. J. Appl. Crystallogr. 49, 574 (2016).CrossRefGoogle Scholar
Liu, L., Knapp, M., Ehrenberg, H., Fang, L., Fan, H., Schmitt, L.A., Fuess, H., Hoelzel, M., Dammak, H., Thi, M.P., and Hinterstein, M.: Average vs. local structure and composition-property phase diagram of K0.5Na0.5NbO3-Bi½Na½TiO3 system. J. Eur. Ceram. Soc. 37, 1387 (2017).CrossRefGoogle Scholar
Bidault, O., Goux, P., Kchikech, M., Belkaoumi, M., and Maglione, M.: Space-charge relaxation in perovskites. Phys. Rev. B 49, 7868 (1994).CrossRefGoogle ScholarPubMed
Liu, L., Huang, Y., Su, C., Fang, L., Wu, M., Hu, C., and Fan, H.: Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl. Phys. A 104, 1047 (2011).CrossRefGoogle Scholar
He, X., Zhou, S., Yuan, Z., Li, Y., Lan, Z., Chen, K., Han, F., Lei, X., and Liu, L.: The origin of weak coupling between polar clusters in Ta2O5-doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3. EPL Europhys. Lett. 129, 37004 (2020).CrossRefGoogle Scholar
Chen, J., Daniels, J.E., Jian, J., Cheng, Z., Cheng, J., Wang, J., Gu, Q., and Zhang, S.: Origin of large electric-field-induced strain in pseudo-cubic BiFeO3-BaTiO3 ceramics. Acta Mater. 197, 1 (2020).CrossRefGoogle Scholar
Wu, J., Zhang, H., Huang, C.-H., Tseng, C.-W., Meng, N., Koval, V., Chou, Y.-C., Zhang, Z., and Yan, H.: Ultrahigh field-induced strain in lead-free ceramics. Nano Energy 76, 105037 (2020).CrossRefGoogle Scholar
Dittmer, R., Jo, W., Damjanovic, D., and Rödel, J.: Lead-free high-temperature dielectrics with wide operational range. J. Appl. Phys. 109, 034107 (2011).CrossRefGoogle Scholar
Shannon, R.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751 (1976).CrossRefGoogle Scholar
Shannon, R.D. and Fischer, R.X.: Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys Rev B 73, 235111 (2006).CrossRefGoogle Scholar
Liu, H.: Universal dielectric relaxation induced giant dielectric permittivity in Mn-doped PbZrO3 ceramics. Ceram. Int. 45, 10380 (2019).CrossRefGoogle Scholar
Xie, Z. and Liu, H.: A novel method of preparing antiferroelectric silver niobate AgNbO3 ceramics. Ceram. Int. 46, 6955 (2020).CrossRefGoogle Scholar
Liu, H.: Effect of an electric field on the electrocaloric response of ferroelectrics. Chin. Phys. B 27, 127701 (2018).CrossRefGoogle Scholar