Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:30:39.624Z Has data issue: false hasContentIssue false

Thermodynamic aspects of epitaxial self-assembly and magnetoelectric response in multiferroic nanostructures

Published online by Cambridge University Press:  31 January 2011

Julia Slutsker*
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Zhuopeng Tan
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899; and Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742
Alexander L. Roytburd
Affiliation:
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742
Igor Levin
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
*
a) e-mail: julias@nist.gov
Get access

Abstract

A thermodynamic approach was used to describe the formation and magnetoelectric response of composite multiferroic films. Experimental and theoretical results that address the origins of different phase morphologies in epitaxial spinel-perovskite nanostructures grown on differently oriented substrates are presented. A theoretical model of magnetoelectric coupling in multiferroic nanostructures that considers a microscopic mechanism of magnetization in single-domain magnetic nanorods is described. This model explains a discontinuous electromagnetic coupling, as observed experimentally, and predicts a hysteretic behavior of magnetization under external electric fields.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bichurin, M.I., Petrov, V.M.Srinivasan, G.: Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites. J. Appl. Phys. 92, 7681 2002CrossRefGoogle Scholar
2Bichurin, M.I., Petrov, V.M., Kiliba, Yu.V.Srinivasan, G.: Magnetic and magnetoelectric susceptibilities of a ferroelectric/ferromagnetic composite at microwave frequencies. Phys. Rev. B 66, 134404 2002CrossRefGoogle Scholar
3Filippov, D.A., Bichurin, M.I., Petrov, V.M., Laletin, V.M., Poddubnaya, N.N.Srinivasan, G.: Giant magnetoelectric effect in composite materials in the region of electromechanical resonance. Tech. Phys. Lett. 30, 6 2004CrossRefGoogle Scholar
4Dong, S., Li, J.F., Viehland, D., Cheng, J.Cross, L.E.: A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite. Appl. Phys. Lett. 85, 3534 2004CrossRefGoogle Scholar
5Stein, S., Wuttig, M., Viehland, D.Quandt, E.: Magnetoelectric effect in sputtered composites. J. Appl. Phys. 97, 10Q301 2005CrossRefGoogle Scholar
6Laletin, V.M., Paddubnaya, N., Srinivasan, G., De Vreugd, C.P., Bichurin, M.I., Petrov, V.M.Filippov, D.A.: Frequency and field dependence of magnetoelectric interactions in layered ferromagnetic transition metal-piezoelectric lead zirconate titanate. Appl. Phys. Lett. 87, 222507 2005CrossRefGoogle Scholar
7Filippov, D.A., Bichurin, M.I., Nan, C.W.Liu, J.M.: Magnetoelectric effect in hybrid magnetostrictive-piezoelectric composites in the electromechanical resonance region. J. Appl. Phys. 97, 113910 2005CrossRefGoogle Scholar
8Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A.Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science. 303, 661 2004CrossRefGoogle ScholarPubMed
9Li, J.: Engineering nanostructure of multiferroic PbTiO3–CoFe2O4 thin film. Ph.D. Thesis, University of Maryland, College Park, MD,2005Google Scholar
10Li, J., Levin, I., Slutsker, J., Provenzano, V., Shenk, P.K., Ramesh, R., Ouyang, J.Roytburd, A.L.: Self-assembled multiferroic nanostructures in the CoFe2O4-PbTiO3 system. Appl. Phys. Lett. 87, 072909 2005CrossRefGoogle Scholar
11Zavaliche, F., Zheng, H., Mohaddes-Ardabili, L., Yang, S.Y., Qhan, Z., Shafer, P., Reilly, E., Chopdekar, R., Jia, Y., Wright, P., Schlom, D., Suzuki, G.Y.Ramesh, R.: Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793 2005CrossRefGoogle ScholarPubMed
12Slutsker, J., Levin, I., Li, J., Artemev, A.Roytburd, A.L.: Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films. Phys. Rev. B 73, 184127 2006CrossRefGoogle Scholar
13Levin, I., Li, J., Slutsker, J.Roytburd, A.L.: Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 18, 2044 2006CrossRefGoogle Scholar
14Zheng, H., Zhan, Q., Zavaliche, F., Sherburne, M., Straub, F., Cruz, M.P., Chen, L-Q., Dahmen, U.Ramesh, R.: Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 6, 1401 2006CrossRefGoogle ScholarPubMed
15Zheng, H., Straub, F., Zhan, Q., Yang, P-L., Hsieh, W.K., Zavaliche, F., Chu, Y.H., Dahmen, U.Ramesh, R.: Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747 2006CrossRefGoogle Scholar
16Roytburd, A.L.: Thermodynamics of polydomain heterostructures. I and II. J. Appl. Phys. 83, 228 1998CrossRefGoogle Scholar
17Artemev, A., Slutsker, J.Roytburd, A.L.: Phase field modeling of self-assembling nanostructures in constrained films. Acta Mater. 53, 3425 2005CrossRefGoogle Scholar
18Nan, C-W., Liu, G., Lin, Y.Chen, H.: Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 2005CrossRefGoogle ScholarPubMed
19Liu, G., Nan, C-W.Sun, J.: Coupling interaction in nanostructured piezoelectric/magnetostrictive multiferroic complex films. Acta Mater. 54, 917 2006CrossRefGoogle Scholar
20Kaganova, I.M.Roitburd, A.L.: Anisotropic crystalline inclusion in isotropic matrix. Kristallografiya (Sov. Phys. Crystallogr.) 34, 1076 1989Google Scholar
21Chapman, B.D., Stern, E.A., Han, S.W., Cross, J.O., Seidler, G.T., Gavrilyatchenko, V., Vedrinskii, R.V.Kraizman, V.L.: Diffuse x-ray scattering in perovskite ferroelectrics. Phys. Rev. B 71 Art. No. 020102 2005CrossRefGoogle Scholar
22Chen, Z.R., Yu, S.W., Meng, L.Lin, Y.: Effective properties of layered magneto-electro-elastic composites. Compos. Struct. 57, 177 2002CrossRefGoogle Scholar
23Slutsker, J.Roytburd, A.L.: Thermodynamics of formation and electro-magnetic coupling of self-assembled multiferroic thin film nanostructures. Phase Transitions 12, 1083 2006CrossRefGoogle Scholar
24Haun, M.J., Furman, E., Jang, S.J.Cross, L.E.: Thermodynamic theory of the lead zirconate-titanate solid-solution system. Ferroelectrics 99, 13 1989CrossRefGoogle Scholar
25Zavaliche, F.: Controlled switching of magnetization with an electric field in self-assembled multiferroic nanostructures, presented at MRS Fall Meeting, Boston, MA, December 2006,Google Scholar