Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T18:19:28.507Z Has data issue: false hasContentIssue false

Thermodynamic rationalization of molten-salt clectrodeposition in oxide-based systems

Published online by Cambridge University Press:  31 January 2011

S. Crouch-Baker
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
R. A. Huggins
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Get access

Abstract

Electrodeposition from molten-salt systems has been studied extensively as a method of producing both polycrystalline and single-crystalline materials. In this work, the thermodynamic aspects of the electrodeposition process are examined in a number of cases in which the molten-salt system behaves effectively as an oxygen-transporting medium, with particular reference to the thermodynamic properties of the melt. It is demonstrated how information gained from the construction of the appropriate isothermal phase diagram may be used to control and/or rationalize the behavior found in a given melt system on electrolysis.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wold, A. and Bellavance, D. in Preparative Methods in Solid State Chemistry, edited by Hagenmuller, P. (Academic Press, New York, 1972), p. 279.CrossRefGoogle Scholar
2Kunnmann, W. in Preparation and Properties of Solid State Materials, edited by Lefever, R.A. (Dekker, New York, 1971), p. 1.Google Scholar
3Elwell, D. in Crystal Growth and Materials, edited by Kaldis, E. and Scheel, H. J. (North Holland, Amsterdam, 1976), p. 606.Google Scholar
4Feigleson, R.S. in Solid State Chemistry. A Contemporary Overview, edited by Holt, S. L., Milstein, J. B., and Robbins, M. (American Chemical Society, Washington, DC, 1980), p. 243.CrossRefGoogle Scholar
5Andrieux, J.L. and Bozon, H.Acad, C.R.. Sci. 228, 565 (1949).Google Scholar
6Andrieux, J.L. and Bozon, H.C. R. Acad. Sci. 230, 952 (1950).Google Scholar
7Rogers, D. B.Ferretti, A. and Kunnmann, W.J. Phys. Chem. Solids 27, 1445 (1966).CrossRefGoogle Scholar
8Perloff, D.S. and Wold, A.Crystal Growth Suppl. J. Phys. Chem. Solids 28, 361 (1967).Google Scholar
9Wold, A.Kunnmann, W.Arnott, R. J. and Ferretti, A.Inorg. Chem. 3, 545 (1964).CrossRefGoogle Scholar
10Schiebler, C.J. Prakt. Chem. 83, 273 (1861).Google Scholar
11Conroy, L. E. and Sienko, M. J.J. Am. Chem. Soc. 74, 3520 (1952).Google Scholar
12Whittingham, M. S. and Huggins, R. A. in Solid State Chemistry (NBS Special Publ. 364, 1972), p. 51.Google Scholar
13Crouch-Baker, S. and Huggins, R. A. (to be published).Google Scholar
14Zubeck, I. V.Feigelson, R. S.Huggins, R. A. and Pettit, P. A.J. Cryst. Growth 34, 85 (1976).CrossRefGoogle Scholar
15DeMattei, R. C.Elwell, D. and Feigelson, R. S.J. Cryst. Growth 44, 545 (1978).Google Scholar
16Weiss, G.Ann. Chim. 1, 446 (1946).Google Scholar
17Unless stated otherwise, the phase diagrams calculated in this work are done so with thermodynamic data from the following source: Barin, I. and Knacke, O.Thermodynamic Properteries of Inorganic Substances (Springer, Berlin, 1973); supplement (with O. Kubaschewski), 1977.Google Scholar
18Zelikman, A. N. and Gorovitz, N. N.Zh. Obshchei Khim. 24, 1920 (1954).Google Scholar
19Ingram, M. D.Baron, B. and Janz, G. J.Electrochim. Acta 11, 1629 (1966).CrossRefGoogle Scholar
20Bartlett, H. E. and Johnson, L. E.J. Electrochem. Soc. 114, 457 (1968).Google Scholar
21Smirnov, M.V. I. YLyubimtseva, a. and Tsiovkina, L.A.Sov. Elec-trochem. 7, 547 (1971).Google Scholar
22Delimarskii, Yu. K.Shapoval, V. I. and Vasilenko, V. A.Sov. Elec-trochem. 7, 1255 (1971).Google Scholar
23Andrieux, J.L. and Weiss, G.Bull. Soc. Chim. FT. 59 (1948).Google Scholar
24Stern, K. H. and Gadomski, S. T.J. Electrochem. Sac. 130, 300 (1983).Google Scholar
25Deanhardt, M. L.Stern, K. H. and Kende, A.J. Electrochem. Soc. 133, 1148 (1986).CrossRefGoogle Scholar
26Andrieux, L.Ann. Chim. 12, 423 (1929).Google Scholar
27Storms, E. and Mueller, B.J. Phys. Chem. 82, 51 (1978)CrossRefGoogle Scholar
28Topor, L. and Kleppa, O. J.J. Chem. Thermodynamics 16, 993 (1984).CrossRefGoogle Scholar