Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T16:22:15.723Z Has data issue: false hasContentIssue false

Thermomechanical properties dependence on chain length in bulk polyethylene: Coarse-grained molecular dynamics simulations

Published online by Cambridge University Press:  31 January 2011

Zhiliang Zhang*
Affiliation:
NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
*
a)Address all correspondence to this author. e-mail: zhiliang.zhang@ntnu.no
Get access

Abstract

Mechanical and thermodynamical properties of bulk polyethylene have been scrutinized using coarse-grained (CG) molecular dynamics simulations. Entangled but cross-link-free polymer clusters are generated by the semicrystalline lattice method for a wide range chain length of alkane modeled by CG beads, and tested under compressive and tensile stress with various temperature and strain rates. It has been found that the specific volume and volumetric thermal expansion coefficient decrease with the increase of chain length, where the specific volume is a linear function of the bond number to all bead number ratios, while the thermal expansion coefficient is a linear rational function of the ratio. Glass-transition temperature, however, does not seem to be sensitive to chain length. Yield stress under tension and compression increases with the increase of the bond number to all bead number ratio and strain rate as well as with decreasing temperature. The correlation found between chain length and these physical parameters suggests that the ratio dominates the mechanical properties of the present CG-modeled linear polymer material.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Takeuchi, H., Roe, R.J.Molecular dynamics simulation of local chain motion in bulk amorphous polymers. I. Dynamics above the glass transition. J. Chem. Phys. 94, 7446 (1991)CrossRefGoogle Scholar
2.Pant, P.V.K., Han, J., Smith, G.D., Boyd, R.H.A molecular dynamics simulation of polyethylene. J. Chem. Phys. 99, 597 (1993)CrossRefGoogle Scholar
3.Boyd, R.H., Gee, R.H., Han, J., Jin, Y.Conformational dynamics in bulk polyethylene: A molecular dynamics simulation study. J. Chem. Phys. 101, 788 (1994)CrossRefGoogle Scholar
4.Hanscomb, J.R., Kaahwa, Y.High-temperature electrical conduction in polyethylene-terephthalate. II. Analysis. J. Phys. D: Appl. Phys. 12, 579 (1979)CrossRefGoogle Scholar
5.Hanscomb, J.R., Kaahwa, Y.High-field transient conduction in PET in the microsecond-millisecond time range. J. Phys. D: Appl. Phys. 11, 725 (1978)CrossRefGoogle Scholar
6.Donald, A.M., Kramer, E.J.Effect of strain history on craze microstructure. Polymer (Guildf.) 23, 457 (1982)CrossRefGoogle Scholar
7.Donald, A.M., Kramer, E.J., Bubeck, R.A.The entanglement network and craze micromechanics in glassy polymers. J. Polym. Sci., Part B: Polym. Phys. 20, 1129 (1982)Google Scholar
8.G'sell, C., Hiver, J.M., Dahouin, A., Souahi, A.Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci. 27, 5031 (1992)CrossRefGoogle Scholar
9.Arruda, E.M., Boyce, M.C.Evolution of plastic anisotropy in amorphous polymers during finite straining. Int. J. Plast. 9, 697 (1993)CrossRefGoogle Scholar
10.Boyce, M.C., Arruda, E.M., Jayachandran, R.The large strain compression, tension, and simple shear of polycarbonate. Polym. Eng. Sci. 34, 716 (1994)CrossRefGoogle Scholar
11.van Melick, H.G.H., Govaert, L.E., Meijer, H.E.H.On the origin of strain hardening in glassy polymers. Polymer (Guildf.) 44, 2493 (2003)CrossRefGoogle Scholar
12.He, J.Y., Zhang, Z.L., Midttun, M., Fonnum, G., Modahl, G.I., Kristiansen, H., Redford, K.Size effect on mechanical properties of micron-sized PS-DVB polymer particles. Polymer (Guildf.) 49, 3993 (2008)CrossRefGoogle Scholar
13.Eyring, H.Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936)CrossRefGoogle Scholar
14.Robertson, R.E.Theory for the plasticity of glassy polymers. J. Chem. Phys. 44, 3950 (1966)CrossRefGoogle Scholar
15.Argon, A.S.A theory for the low-temperature plastic deformation of glassy polymers. Philos. Mag. 28, 839 (1973)CrossRefGoogle Scholar
16.Wu, P.D., van der Giessen, E.On improved network models for rubber elasticity and their applications to orientation in glassy polymers. J. Mech. Phys. Solids 41, 427 (1993)CrossRefGoogle Scholar
17.Riby, D., Roe, R.J.Molecular dynamics simulation of polymer liquid and glass. II. Short range order and orientation correlation. J. Chem. Phys. 89, 5280 (1988)Google Scholar
18.Whitten, P.G., Brown, H.R.Polymer entanglement density and its influence on interfacial friction. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 76, 026101 (2007)CrossRefGoogle ScholarPubMed
19.Lyulin, A.V., Balabaev, N.K., Michels, M.A.J.Correlated segmental dynamics in amorphous atactic polystyrene: A molecular dynamics simulation study. Macromolecules 35, 9595 (2002)CrossRefGoogle Scholar
20.van der Vegt, N.F.A., Briels, W.J., Wessling, M., Strathmann, H.Free energy calculations of small molecules in dense amorphous polymers. Effect of the initial guess configuration in molecular dynamics studies. J. Chem. Phys. 105, 8849 (1996)CrossRefGoogle Scholar
21.Sok, R.M., Berendsen, H.J.C.Time-dependent self-diffusion in a semidilute suspension of Brownian particles. J. Chem. Phys. 96, 4699 (1992)CrossRefGoogle Scholar
22.Zhang, F.Molecular-dynamics simulation of solitary waves in polyethylene. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 56, 6077 (1997)CrossRefGoogle Scholar
23.Capaldi, F.M., Boyce, M.C., Rutledge, G.C.Molecular response of a glassy polymer to active deformation. Polymer (Guildf.) 45, 1391 (2004)CrossRefGoogle Scholar
24.Nielsen, S., Lopez, C.F., Srinivas, G., Klein, M.L.A coarse grain model for n-alkanes parameterized from surface tension data. J. Chem. Phys. 119, 7043 (2003)CrossRefGoogle Scholar
25.Louis, A.A.Beware of density dependent pair potentials. J. Phys. Condens. Matter 14, 9187 (2002)CrossRefGoogle Scholar
26.Akkermans, R.L.C., Briels, W.J.A structure-based coarse-grained model for polymer melts. J. Chem. Phys. 114, 1020 (2001)CrossRefGoogle Scholar
27.Zhang, M., Müller-Plathe, F.The Soret effect in dilute polymer solutions: Influence of chain length, chain stiffness and solvent quality. J. Chem. Phys. 125, 124903 (2006)CrossRefGoogle ScholarPubMed
28.Di Matteo, A., Müller-Plathe, F., Milano, G.From mesoscale back to atomistic models: A fast reverse-mapping procedure for vinyl polymer chains. J. Phys. Chem. B 111, 2765 (2007)Google Scholar
29.Terao, T., Lussetti, E., Müller-Plathe, F.Non-equilibrium molecular dynamics methods for computing the thermal conductivity: Application to amorphous polymers. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 75, 057701 (2007)CrossRefGoogle Scholar
30.Fermeglia, M., Pricl, S.Multiscale modeling for polymer systems of industrial interest. Prog. Org. Coat. 58, 187 (2007)CrossRefGoogle Scholar
31.Pricl, S., Fermeglia, M., Ferrone, M., Asquini, A.Scaling properties in the molecular structure of three-dimensional, nanosized phenylene-based dendrimers as studied by atomistic molecular dynamics simulations. Carbon 41, 2269 (2003)CrossRefGoogle Scholar
32.Wick, C.D., Theodorou, D.N.Connectivity-altering Monte Carlo simulations of the end group effects on volumetric properties for poly(ethylene oxide). Macromolecules 37, 7026 (2004)CrossRefGoogle Scholar
33.Faulon, J.L.Stochastic generator of chemical structure. (4) Building polymeric systems with specified properties. J. Comput. Chem. 22, 580 (2001)CrossRefGoogle Scholar
34.Shinoda, W., Devane, R., Klein, M.L.Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol. Simul. 33, 27 (2007)CrossRefGoogle Scholar
35.Beredsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Dinola, A., Haak, J.R.Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984)CrossRefGoogle Scholar
36.Takeuchi, H., Roe, R.J.Molecular dynamics simulation of local chain motion in bulk amorphous polymers. II. Dynamics at glass transition. J. Chem. Phys. 94, 7458 (1991)CrossRefGoogle Scholar
37.Plimpton, S.Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)CrossRefGoogle Scholar
38.Rudek, M.M., Fisk, J.A., Chakarov, V.M., Katz, J.L.Condensation of a supersaturated vapor. XII. The homogeneous nucleation of the n-alkanes. J. Chem. Phys. 105, 4707 (1996)CrossRefGoogle Scholar
39.Laso, M., Perpete, E.A.Multiscale Modelling of Polymer Properties (Elsevier, Amsterdam, The Netherlands 2006)3145Google Scholar
40.Dee, G.T., Ougizawa, T., Walsh, D.J.The pressure-volume-temperature properties of polyethylene, poly(dimethyl siloxane), poly(ethylene glycol) and poly(propylene glycol) as a function of molecular weight. Polymer (Guildf.) 33, 3462 (1992)CrossRefGoogle Scholar
41.Turcotte, D.L., Schubert, G.Geodynamics 2nd ed (Cambridge University Press, Cambridge 2002)CrossRefGoogle Scholar
42.Han, J., Gee, R.H., Boyd, R.H.Glass transition temperatures of polymers from molecular dynamics simulations. Macromolecules 27, 7781 (1994)CrossRefGoogle Scholar
43.Gee, R.H., Boyd, R.H.The role of the torsional potential in relaxation dynamics: A molecular dynamics study of polyethylene. Comput. Theor. Polym. Sci. 8, 93 (1998)CrossRefGoogle Scholar
44.Angell, C.A., Clarke, J.H.R., Woodcock, L.V.Advances in Chemical Physics Vol. 48 edited by I. Prigogine and S.A. Rice (Wiley, New York 1981)397CrossRefGoogle Scholar
45.Signorini, F., Barrat, J.L., Klein, M.L.Structural relaxation and dynamical correlations in a molten state near the liquid–glass transition: A molecular dynamics study. J. Chem. Phys. 92, 1294 (1990)CrossRefGoogle Scholar
46.Hasan, O.A., Boyce, M.C.Energy storage during inelastic deformation of glassy polymers. Polymer (Guildf.) 34, 5085 (1993)CrossRefGoogle Scholar
47.Walley, S.M., Field, J.E., Pope, P.H., Safford, N.A.The rapid deformation behaviour of various polymers. J. Phys. 1, 1889 (1991)Google Scholar
48.Plazek, D.J.Anomalous viscoelastic properties of polymers: Experiments and explanations. J. Non-Cryst. Solids 353, 3783 (2007)CrossRefGoogle Scholar
49.Ferry, J.D.Viscoelastic Properties of Polymers 3rd ed. (John Wiley, New York 1980)Google Scholar
50.Ngai, K.L., Plazek, D.J.Resolution of sub-rouse modes of polystyrene by dissolution. Macromolecules 35, 9136 (2002)CrossRefGoogle Scholar