Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T15:42:44.040Z Has data issue: false hasContentIssue false

Thin film scratch testing in two dimensions—Experiments and analysis

Published online by Cambridge University Press:  31 January 2011

Maarten P. de Boer
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
John C. Nelson
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
William W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

We have modified the microscratch test to create a near plane strain loading condition. In the Microwedge Scratch Test (MWST), a wedge-shaped diamond indenter tip is drawn along a fine line (i.e., narrow strip of film), while simultaneously being driven into the line. We compare microwedge scratching of zone 1 (voided grain boundaries) and zone T (metallurgical grain boundaries) thin film specimens of sputtered tungsten on thermally grown SiO2. Symptomatic of its weak grain boundaries, the zone 1 film displays three separate crack systems. Because of its superior grain boundary strength, the zone T film displayed only one of these—an interfacial crack system. By correlating fracture phenomena to signature events in the load-displacement curve, we develop governing equations for propagating interfacial cracks, including expressions for strain energy release rate, bending strain, and mode mixity. Grain boundary fracture causes zone 1 films to spall before a stable crack is formed. Zone T films survive the bending strains, and hence adhesions may be inferred from stable crack growth mechanics. We conclude by contrasting and comparing experimental results for plane strain indentation versus plane strain scratching.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hutchinson, J. W. and Suo, Z., in Advances in Applied Mechanics, edited by Wu, T. Y. and Hutchinson, J. W. (Academic Press, San Diego, CA, 1992), Vol. 29, pp. 63191.Google Scholar
2.Benjamin, P. and Weaver, C., Proceedings of the Royal Society A254, 163 (1960).Google Scholar
3.Laugier, M. T., Thin Solid Films 117, 243 (1984).CrossRefGoogle Scholar
4.Burnett, P. J. and Rickerby, D. S., Thin Solid Films 157, 233 (1988).CrossRefGoogle Scholar
5.Sarin, V. K., J. Adh. Sci. Technol. 7 (12), 1265 (1993).CrossRefGoogle Scholar
6.Venkataraman, S., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res. 7, 1126 (1992).CrossRefGoogle Scholar
7.Marshall, D. B. and Evans, A. G., J. Appl. Phys. 56 (10), 2632 (1984).CrossRefGoogle Scholar
8.Rosenfeld, L. G., Ritter, J. E., Lardner, T. J., and Lin, M. R., J. Appl. Phys. 67 (7), 3291 (1990).CrossRefGoogle Scholar
9.O'Sullivan, T. C. and King, R. B., J. Trib. 110, 235 (1988).CrossRefGoogle Scholar
10.Hamilton, G. M. and Goodman, L. E., J. Appl. Mech. 33, 371 (1966).CrossRefGoogle Scholar
11.de Boer, M. P. and Gerberich, W. W., Acta Metall. Mater. 44 (8), 3169 (1996).CrossRefGoogle Scholar
12.de Boer, M. P. and Gerberich, W. W., Acta Metall. Mater. 44 (8), 3177 (1996).CrossRefGoogle Scholar
13.Maissel, L. I. and Glany, R., Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).Google Scholar
14.Thornton, J. A., Ann. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
15.Movchan, B. A., Demchishin, A. V., and Kooluck, L. D., J. Vac. Sci. Technol. 11, 830 (1974).Google Scholar
16.Haghiri-Gosnet, A. M., Ladan, F. R., Mayeux, C., Launois, H., and Joncour, M. C., J. Vac. Sci. Technol. A 7 (04), 2663 (1989).CrossRefGoogle Scholar
17.Vink, T. J.et al., J. Appl. Phys. 74 (2), 988 (1993).CrossRefGoogle Scholar
18.Ross, F. M., Kola, R. R., Hull, R., and Bean, J. C., in Interface Control of Electrical, Chemical, and Mechanical Properties, edited by Murarka, S. P., Rose, K., Ohmi, T., and Seidel, T. (Mater. Res. Soc. Symp. Proc. 318, Pittsburgh, PA, 1994), p. 697.Google Scholar
19.Wong, S. S. and Furukawa, S., Tungsten and other refractory metals for VLSI applications (Materials Research Society, Pittsburgh, PA, 1990).Google Scholar
20.Suo, Z. and Hutchinson, J. W., Int. J. Frac. 43, 1 (1990).CrossRefGoogle Scholar
21.de Boer, M. P., Ph. D. Thesis, Univ. of Minnesota (1996).Google Scholar
22.Cao, H. C. and Evans, A. G., Mech. of Mater. 7, 295 (1989).CrossRefGoogle Scholar
23.Sze, S. M., VLSI Technology (McGraw-Hill, New York, 1983).Google Scholar
24.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
25.King, R. B., Int. J. Solids Struct. 23 (12), 1657 (1987).CrossRefGoogle Scholar
26.de Boer, M. P., Kriese, M., and Gerberich, W. W., J. Mater. Res. 12, 2673 (1996).CrossRefGoogle Scholar
27. Imetra, in 10523. N.Y., Eds. (914–592–2800, USA, 200 Clearbrook Rd.).Google Scholar
28.Wu, T. W., J. Mater. Res. 6, 407 (1991).CrossRefGoogle Scholar
29.Suh, N. P., Wear 44, 1 (1977).CrossRefGoogle Scholar
30.Valli, J., J. Vac. Sci. Technol. A 4 (6), 3007 (1986).CrossRefGoogle Scholar
31.Matthewson, M. J., Appl. Phys. Lett. 49 (21), 1426 (1986).CrossRefGoogle Scholar
32.Bowden, F. P. and Tabor, D., The Friction and Lubrication of Solids (Clarendon, Oxford, 1954).Google Scholar
33.Johnson, K. L., Contact Mechanics (Cambridge, Malta, 1985).CrossRefGoogle Scholar
34.King, R. B. and O'Sullivan, T. C., Int. J. Solids Struct. 23 (5), 581 (1987).CrossRefGoogle Scholar
35.Chai, H., Babcock, C. D., and Knauss, W. G., Int. J. Solids Struct. 17 (11), 1069 (1981).CrossRefGoogle Scholar
36.Dundurs, J., J. Appl. Mech. 36, 650 (1969).CrossRefGoogle Scholar
37.Rice, J. R., J. Appl. Mech. 55, 98 (1988).CrossRefGoogle Scholar
38.Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials (John Wiley & Sons, New York, 1989).Google Scholar
39.He, M. Y. and Hutchinson, J. W., J. Appl. Mech. 56, 270 (1989).CrossRefGoogle Scholar
40.de Boer, M. (1996), unpublished results—while not reported in MWIT #2, zone T films did not spall at long lengths, but the substrate still cracked.Google Scholar
41.Shankoff, T. A. and Chandross, E. A., J. Electrochem. Soc. 122 (2), 294 (1975).CrossRefGoogle Scholar