Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T16:16:17.591Z Has data issue: false hasContentIssue false

Thin single screen-printed bifunctional titania layer photoanodes for high performing DSSCs via a novel hybrid paste formulation and process

Published online by Cambridge University Press:  23 November 2012

Kee Eun Lee
Affiliation:
Department of Materials Engineering, McGill University, Montreal, Quebec, CanadaH3A 2B2
Cecile Charbonneau
Affiliation:
Department of Materials Engineering, McGill University, Montreal, Quebec, CanadaH3A 2B2
George P. Demopoulos*
Affiliation:
Department of Materials Engineering, McGill University, Montreal, Quebec, CanadaH3A 2B2
*
a)Address all correspondence to this author. e-mail: george.demopoulos@mcgill.ca
Get access

Abstract

A novel hybrid titania paste comprising aqueous-synthesized anatase (A) nanocrystalites and submicrometer-sized “sea urchin”-like rutile (R) particles that enables the construction of thin (5–6 μm) single-layer photoanodes with competitive power conversion efficiency is described. Owing to the high surface area of the dye (N719)-coated anatase film, the scattering properties of the unique rutile particulates, and the incorporation of P25 particles, the constructed bifunctional electrode films exhibit excellent electron transport properties (long electron lifetime) and no electrolyte diffusion resistance. Dye-sensitized solar cell devices built with the thin (5–6 μm) hybrid electrodes showed greatly improved power conversion efficiency (PCE), namely 7.04%, when compared to devices based on single anatase (4.20%), double-layer (A + R), or double thickness commercial benchmark paste (6.74%). This is an impressive result as less than 1/2 material was used in a single printed layer. Thinner films as the ones built here may prove particularly advantageous in using new noniodide electrolytes associated with slow diffusion rates.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kalyanasundaram, K.: Dye-Sensitized Solar Cells (CRC Press., Lausanne, Switzerland, 2010).CrossRefGoogle Scholar
Hagfeldt, A., Boschloo, G., Sun, L.C., Kloo, L., and Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595 (2010).CrossRefGoogle ScholarPubMed
Yella, A., Lee, H., Lee, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W., Yeh, C., Zakeeruddin, S.M., and Grätzel, M.: Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629634 (2011).CrossRefGoogle ScholarPubMed
Qi, J., Dang, X., Hammond, P.T., and Belcher, A.M.: Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core–shell nanostructure. ACS Nano 5, 71087116 (2011).CrossRefGoogle ScholarPubMed
Shan, G-B., Assaaoudi, H., and Demopoulos, G.P.: Enhanced performance of DSSC by utilization of NIR light harvesting & light-reflecting external bifunctional layer. ACS Appl. Mater. Interfaces 3, 32393243 (2011).Google Scholar
Sauvage, F., Chen, D., Comte, P., Huang, F., Heiniger, L., Cheng, Y., Caruso, R.A., and Graetzel, M.: Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4, 44204425 (2010).Google Scholar
Desilvestro, H.: Dye solar cells: Towards commercialization. 4th International Conference on the Industrialization of DSC, November 2010, Colorado Springs, CO. http://www.dyesol.com/download/DSCIC10/HDesilvestro.pdf.Google Scholar
Baxter, J.B.: Commercialization of dye sensitized solar cells. J. Vac. Sci. Technol., A 30, 020801 (2012).CrossRefGoogle Scholar
Chou, T.P., Zhang, Q., Russo, B., Fryxell, G.E., and Cao, G.: Titania particle size effect on the overall performance of dye-sensitized solar cells. J. Phys. Chem. C 111, 62966302 (2007).CrossRefGoogle Scholar
Liao, J., He, J., Xu, H., Kuang, D., and Su, C.: Effect of TiO2 morphology on photovoltaic performance of dye-sensitized solar cells: Nanoparticles, nanofibers, hierarchical spheres and ellipsoid spheres. J. Mater. Chem. 22, 79107918 (2012).Google Scholar
Lei, Y., Liu, H., and Xiao, W.: First principles study of the size effect of TiO2 anatase nanoparticles in dye-sensitized solar cell. Modell. Simul. Mater. Sci. Eng. 18, 025004 (2010).Google Scholar
Kim, B., Rho, S., and Kang, C.: Effects of TiO2 structures in dye-sensitized solar cell. J. Nanosci Nanotechnol. 11, 15151517 (2011).Google Scholar
Yun, T.K., Park, S.S., Kim, D., Shim, J., Bae, J.Y., Huh, S., and Won, Y.S.: Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes. Dalton Trans. 41, 1284 (2012).CrossRefGoogle ScholarPubMed
Nikolay, T., Larina, L., Shevaleevskiy, O., and Ahn, B.T.: Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells. Energy Environ. Sci. 4, 1480 (2011).Google Scholar
Zhang, X., Liu, F., Huang, Q., Zhou, G., and Wang, Z.: Dye-sensitized W-doped TiO2 solar cells with a tunable conduction band and suppressed charge recombination. J. Phys. Chem. C 115, 1266512671 (2011).Google Scholar
Lee, K.E., Gomez, M.A., Charbonneau, C., and Demopoulos, G.P.: Enhanced surface hydroxylation of nanocrystalline anatase films improves photocurrent output and electron lifetime in dye sensitized solar cell photoanodes. Electrochim. Acta 67, 208215 (2012).CrossRefGoogle Scholar
Charbonneau, C., Gauvin, R., and Demopoulos, G.P.: Aqueous solution synthesis of crystalline anatase nanocolloids for the fabrication of DSC photoanodes. J. Electrochem. Soc. 158, H224H231 (2011).Google Scholar
Lee, K.E., Gomez, M.A., Elouatik, S., and Demopoulos, G.P.: Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir 26, 95759583 (2010).Google Scholar
Lee, K.E., Gomez, M.A., Regier, T., Hu, Y., and Demopoulos, G.P.: Further understanding of the electronic interactions between N719 sensitizer and anatase TiO2 films: A combined x-ray absorption and x-ray photoelectron spectroscopic study. J. Phys. Chem. C 115, 56925707 (2011).CrossRefGoogle Scholar
Charbonneau, C., Gauvin, R., and Demopoulos, G.P.: Nucleation and growth of self-assembled nanofibre-structured rutile (TiO2) particles via controlled forced hydrolysis of titanium tetrachloride solution. J. Cryst. Growth 312, 86 (2009).Google Scholar
Ferber, J. and Luther, J.: Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 54, 265 (1998).Google Scholar
Ito, S., Murakami, T.N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, M.K., and Grätzel, M.: Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613 (2008).CrossRefGoogle Scholar
Ito, S., Takahashi, K., Yusa, S., Imamura, T., and Tanimoto, K.: Effects of homogenization scheme of TiO2 screen-printing paste for dye-sensitized solar cells. Int. J. Photoenergy 2012, 17 (2012). Article ID 405642.Google Scholar
Ito, S., Chen, P., Comte, P., Nazeeruddin, M.K., Liska, P., Péchy, P., and Grätzel, M.: Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovoltaics Res. Appl. 15, 603612 (2007).Google Scholar
Xu, C., Shin, P.H., Cao, L., Wu, J., and Gao, D.: Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells. Chem. Mater. 22, 143148 (2010).Google Scholar
Qiu, J., Zhuge, F., Li, X., Gao, X., Gan, X., Li, L., Weng, B., Shi, Z., and Hwang, Y.: Coaxial multi-shelled TiO2 nanotube arrays for dye sensitized solar cells. J. Mater. Chem. 22, 35493554 (2012).Google Scholar
Luo, J., Gao, L., Sun, J., and Liu, Y.: A bilayer structure of a titania nanoparticle/highly-ordered nanotube array for low-temperature dye-sensitized solar cells. RSC Adv. 2, 18841889 (2012).CrossRefGoogle Scholar
Wu, X., Lu, G.Q., and Wang, L.: Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application. Energy Environ. Sci. 4, 35653572 (2011).Google Scholar
Im, J.S., Lee, S.K., and Lee, Y.S.: Cocktail effect of Fe2O3 and TiO2 semiconductors for a high performance dye-sensitized solar cell. Appl. Surf. Sci. 257, 21642169 (2011).CrossRefGoogle Scholar
Kim, D., Kim, J., Kim, K., Cho, S., Hwang, W., Seo, M., Kim, M., and Lee, J.: Preparations of titanium composite electrodes from commercial inorganic pigment and its application to light scattering layers on dye-sensitized solar cells. Mol. Cryst. Liq. Cryst. 539, 156165 (2011).Google Scholar
Hore, S., Vetter, C., Kern, R., Smit, H., and Hinsch, A.: Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90, 1176 (2006).CrossRefGoogle Scholar
Agarwala, S., Kevin, M., Wong, A.S.W., Peh, C.K.N., Thavasi, V., and Ho, G.W.: Mesophase ordering of TiO2 film with high surface area and strong light harvesting for dye-sensitized solar cell. ACS Appl. Mater. Interfaces 2, 18841891 (2010).Google Scholar
Chou, C., Guo, M., Liu, K., and Chen, Y.: Preparation of TiO2 particles and their applications in the light scattering layer of a dye-sensitized solar cell. Appl. Energy 92, 224233 (2012).CrossRefGoogle Scholar
Estruga, M., Domingo, C., Domènech, X., and Ayllón, J.A.: Low temperature N, N-dimethylformamide-assisted synthesis and characterization of anatase-rutile biphasic nanostructured titania. Nanotechnology 20, 125604 (2009).Google Scholar
Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D.A., Murakami, T., and Fujishima, A.: Anatase TiO2 nanoparticles on rutile TiO2 nanorods: A heterogeneous nanostructure via layer-by-layer assembly. Langmuir 23, 1091610919 (2007).Google Scholar
Hurum, D.C., Gray, K.A., Rajh, T., and Thurnauer, M.C.: Recombination pathways in the Degussa P25 formulation of TiO2: Surface versus lattice mechanisms. J. Phys. Chem. B 109, 977980 (2005).Google Scholar
McGehee, M.D.: Paradigm shifts in dye-sensitized solar cells. Science 334, 607608 (2011).CrossRefGoogle ScholarPubMed
Zaban, A., Greenshtein, M., and Bisquert, J.: Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4, 859864 (2003).Google Scholar
Chappel, S., Grinis, L., Ofir, A., and Zaban, A.: Extending the current collector into the nanoporous matrix of dye sensitized electrodes. J. Phys. Chem. B 109, 16431647 (2005).Google Scholar
Nakata, K., Liu, B., Ishikawa, Y., Sakai, M., Saito, H., Ochiai, T., Sakai, H., Murakami, T., Abe, M., Takagi, K., and Fujishima, A.: Fabrication and photocatalytic properties of TiO2 nanotube arrays modified with phosphate. Chem. Lett. 40, 11071109 (2011).CrossRefGoogle Scholar
Bisquert, J., Garcia-Belmonte, G., Fabregat-Santiago, F., Ferriols, N.S., Bogdanoff, P., and Pereira, E.C.: Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution. J. Phys. Chem. B 104, 2287 (2000).CrossRefGoogle Scholar
Zaban, A., Meier, A., and Gregg, B.A.: Electric potential distribution and short-range screening in nanoporous TiO2 electrodes. J. Phys. Chem. B 101, 7985 (1997).Google Scholar
Wang, Q., Moser, J.E., and Grätzel, M.: Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945 (2005).Google Scholar
Wang, Q., Ito, S., Grätzel, M., Fabregat-Santiago, F., Mora-Sero, I., Bisquert, J., Bessho, T., and Imai, H.: Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B 110, 25210 (2006).Google Scholar
Bisquert, J.: Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325 (2002).Google Scholar
Cass, M.J., Qiu, F.L., Walker, A.B., Fisher, A.C., and Peter, L.M.: Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells. J. Phys. Chem. B 107, 113119 (2002).Google Scholar
Nakade, S., Saito, Y., Kubo, W., Kitamura, T., Wada, Y., and Yanagida, S.: Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. J. Phys. Chem. B 107, 86078611 (2003).CrossRefGoogle Scholar
Santulli, A.C., Koenigsmann, C., Tiano, A.L., DeRosa, D., and Wong, S.S.: Correlating titania morphology and chemical composition with dye-sensitized solar cell performance. Nanotechnology 22, 245402 (2011).Google Scholar
Supplementary material: File

Lee Supplementary Material

Appendix

Download Lee Supplementary Material(File)
File 339.5 KB