Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T01:16:11.607Z Has data issue: false hasContentIssue false

Third-order nonlinear optical response in PbS-coated CdS nanocomposites

Published online by Cambridge University Press:  31 January 2011

Bing Liu
Affiliation:
Department of Chemistry, National University of Singapore, 10 Kent Ridge Crescent, Republic of Singapore 119260
Chwee Har Chew
Affiliation:
Department of Chemistry, National University of Singapore, 10 Kent Ridge Crescent, Republic of Singapore 119260
Leong Ming Gan
Affiliation:
Department of Chemistry, National University of Singapore, 10 Kent Ridge Crescent, Republic of Singapore 119260
Guo Qin Xu*
Affiliation:
Department of Chemistry, National University of Singapore, 10 Kent Ridge Crescent, Republic of Singapore 119260
Heping Li
Affiliation:
school of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Republic of Singapore 639798
Yee Loy Lam
Affiliation:
school of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Republic of Singapore 639798
Chan Hin Kam
Affiliation:
school of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Republic of Singapore 639798
Wen Xiu Que
Affiliation:
school of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Republic of Singapore 639798
*
a)Address all correspondence to this author.
Get access

Abstract

PbS-coated CdS nanocomposite particles were synthesized by an ion displacement method in an inverse microemulsion. Their growth kinetics were studied with UV–vis spectroscopy. Transmission electron microscopic characterization shows that PbS-coated CdS particles are uniform in size with a mean diameter of 6 nm. The electron diffraction patterns demonstrate their crystalline nature. Third-order nonlinear optical properties in the samples were investigated using the Z-scan technique with femtosecond laser pulses at 780-nm wavelength. The nonlinear refractive index of PbS-coated CdS nanocomposite particles in microemulsion varied with the molar ratio of Cd/Pb ions and reached a maximum of 5.3 × 10−12 cm2/GW for the sample with a Cd/Pb ion ratio of 1 to 2. The observed large refractive nonlinearity in these nanocomposite particles may be attributed to the optical Stark effect and strong interfacial and inter-nanoparticle interactions.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brus, L.E., Appl. Phys. A 53, 465 (1991).CrossRefGoogle Scholar
2.Alivisatos, A.P., Science 271, 933 (1996).CrossRefGoogle Scholar
3.Herron, N. and Thorn, D.L., Adv. Mater. 10, 1173 (1998).3.0.CO;2-6>CrossRefGoogle Scholar
4.Eaton, D.F., Science 253, 281 (1991).CrossRefGoogle Scholar
5.Othmani, A., Plenet, J.C., Berstein, E., Bovier, C., Dumas, C., Riblet, P., Gilliot, P., Levy, R., and Grun, J.B., J. Cryst. Growth 144, 141 (1994).CrossRefGoogle Scholar
6.Yao, H., Takahara, S., Mizuma, H., Kozeki, T., and Hayashi, T., J. Appl. Phys. Jpn. 35, 4633 (1996).CrossRefGoogle Scholar
7.Sanctis, O.D., Kadono, K., Tanaka, H., and Sakaguchi, T., in Microcrystalline and Nanocrystalline Semiconductors, edited by Brus, L., Hirose, M., Collins, R.W., Koch, F., and Tsai, C.C. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA, 1995), p. 253.Google Scholar
8.Yu, B.L., Yin, G.S., Zhu, C.S., and Gan, F.X., Opt. Mater. 11, 17 (1998).CrossRefGoogle Scholar
9.Herron, N., Wang, Y., and Eckert, H., J. Am. Chem. Soc. 112, 1322 (1990).CrossRefGoogle Scholar
10.Beecroft, L.L., and Ober, C.K., Chem. Mater. 9, 1302 (1997).CrossRefGoogle Scholar
11.Han, M.Y., Huang, W., Gan, L.M., Chew, C.H., Zhang, X.J., and Ji, W., J. Phys. Chem. B 102, 1884 (1998).CrossRefGoogle Scholar
12.Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., and Brus, L.E., J. Am. Chem. Soc. 112, 1327 (1990).CrossRefGoogle Scholar
13.Meyer, M., Wallberg, C., Kurihara, K., and Fendler, J.H., J. Chem. Soc. Chem. Commun. 90 (1984).CrossRefGoogle Scholar
14.Lianos, P. and Thomas, J.K., Chem. Phys. Lett. 125, 299 (1986).CrossRefGoogle Scholar
15.Petit, C., Lixon, P., and Pileni, M.P., J. Phys. Chem. 94, 1598 (1990).CrossRefGoogle Scholar
16.Steigerwald, M.L., Alivisatos, A.P., Gibson, J.M., Harris, T.D., Kortan, R., Muller, A.J., Thayer, A.M., Duncan, T.M., Douglass, D.C., and Brus, L.E., J. Am. Chem. Soc. 110, 3046 (1988).CrossRefGoogle Scholar
17.Bedja, I. and Kamat, P.V., J. Phys. Chem. 99, 9182 (1995).CrossRefGoogle Scholar
18.Zhou, H.S., Sasahara, H., Honma, I., Komiyama, H., and Haus, J.W., Chem. Mater. 6, 1534 (1994).CrossRefGoogle Scholar
19.Sheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., and Van Stryland, E.W., IEEE J. Quantum Electron. 26, 760 (1990).CrossRefGoogle Scholar
20.Gan, L.M. and Chew, C.H., Colloid Surf. A 123, 681 (1997).CrossRefGoogle Scholar
21.Bain, C.D., Evall, J., and Whitesides, G.M., J. Am. Chem. Soc. 111, 7155 (1989).CrossRefGoogle Scholar
22.Horiuchi, S., Fundamentals of high-resolution transmission elec-tron microscopy (North-Holland, Amsterdam, The Netherlands, 1994).Google Scholar
23.Cotter, D., Burt, M.G., and Manning, R.J., Phys. Rev. Lett. 68, 1200 (1992).CrossRefGoogle Scholar
24.Ai, X., Guo, L., Zou, Y., Li, Q., and Zhu, H., Mater. Lett. 38, 131 (1999).CrossRefGoogle Scholar
25.Kinoshita, S., Kai, Y., Yamaguchi, M., and Yagi, T., Phy. Rev. Lett. 75, 148 (1995).CrossRefGoogle Scholar
26.Gacoin, T., Boilot, J.P., Gandais, M., Ricolleau, C., and Chamarro, M., Microcrystalline and Nanocrystalline Semiconductors, edited by Brus, L., Hirose, M., Collins, R.W., Koch, F., and Tsai, C.C. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA, 1995), p. 247.Google Scholar
27.Banayi, L., Hu, Y.Z., Lindberg, M., and Koch, S.W., Phys. Rev. B 48, 2819 (1993).Google Scholar