Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:32:25.481Z Has data issue: false hasContentIssue false

TiC/metal nacrous structures and their fracture toughness increase

Published online by Cambridge University Press:  31 January 2011

C.H. Liu
Affiliation:
Department of Physics, Tsinghua University, Beijing 100084, China
Wen-Zhi Li
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Heng-De Li
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Get access

Abstract

Multilayers of TiC and a series of metals have been fabricated by ion beam sputtering deposition to simulate nacre. The individual layer thickness varies from 1 to 10 nm, and the total thickness of the multilayers is about 1 μm. Transmission electron microscopy (TEM), low-angle x-ray diffraction (LXRD), and high-resolution electron microscopy (HREM) show their periodicity and lattice images. A particular method is devised to evaluate the relative toughness of this artificial pearlite. It is shown that the toughness of these nanocomposite materials can be tremendously improved. A maximum of toughness appears at a certain modulation. Metals with high plasticity such as Al and Cu can produce a particularly spectacular effect on increasing the toughness of these multilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Huang, L. J. and Li, H. D., in Materials Synthesis Utilizing Biological Processes, edited by Rieke, P. C., Calvert, P. D., and Alper, M. (Mater. Res. Soc. Symp. Proc. 174, Pittsburgh, PA, 1990), p. 101.Google Scholar
2.Li, H. D., Cui, F. Z., and Feng, Q.L., in C-MRS Fall Conf. Symp. Proc. (1990), p. 4.Google Scholar
3.Laraia, V. J. and Heuer, A. H., in Materials Synthesis Utilizing Biological Processes, edited by Rieke, P. C., Calvert, P. D., and Alper, M. (Mater. Res. Soc. Symp. Proc. 174, Pittsburgh, PA, 1990), p. 125.Google Scholar
4.Wang, R. Z., Wen, H. B., Cui, F.Z., Zhang, H.B., and Li, H.D., J. Mater. Sci. 30, 2299 (1995).Google Scholar
5.Heuer, A. H., Fink, D. J., Laraia, V. J., Arias, J. L., Calvert, P. D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P. C., Thompson, D.H., Wheeler, A. P., Veis, A., and Caplan, A.I., Science 255, 1098 (1992).CrossRefGoogle Scholar
6.Calvert, P., MRS Bull. 10, 37 (1992).CrossRefGoogle Scholar
7.Jackson, A. P., J. Mater. Sci. Lett. 5, 975 (1986).Google Scholar
8.Yasrebi, M., Kim, G. H., Gunnison, K. E., Milius, D. L., Sarikaya, M., and Aksay, I.A., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 625.Google Scholar
9.Wang, R. Z., Cui, F. Z., and Li, H. D., Chinese J. Mater. Res. (in press).Google Scholar
10.Jackson, A. P., Vincent, J.F. V., and Turner, R. M., Proc. R. Soc. London Ser. B 234, 415 (1988).Google Scholar
11.He, X-M., Li, W-Z., and Li, H. D., Surf. Coatings Technol. (in press).Google Scholar
12.Oechsner, H., Appl. Phys. 8, 185 (1975).CrossRefGoogle Scholar