Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T01:15:17.522Z Has data issue: false hasContentIssue false

Time-resolved studies of the order–disorder phase transformations in rare-earth–transition metal intermetallics with 2-17 stoichiometry

Published online by Cambridge University Press:  31 January 2011

Y.Y. Kostogorova-Beller*
Affiliation:
Department of Engineering Mechanics, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0526
M.J. Kramer
Affiliation:
Iowa State University, Materials Science and Engineering, Ames, Iowa 50011-3020
J.E. Shield
Affiliation:
Department of Mechanical Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588
*
a)Address all correspondence to this author. e-mail: ykostogorovabeller2@unl.edu
Get access

Abstract

High-temperature order–disorder transformations in R2T17 and R2T17-M-C intermetallics with R = Pr, Sm, Dy, Tb; T = Co, Fe; and M = Zr, Nb were studied utilizing time-resolved synchrotron x-ray diffraction at the Advanced Photon Source (APS) at the U.S. Department of Energy’s Argonne National Laboratory (Argonne, IL). High-energy synchrotron radiation provides intense, highly penetrating x-rays, which are ideal for in situ studies of phase transformations. Alloying additions are used to stabilize formation of metastable phases; their influence on order recovery was investigated. The experimental setup utilized Debye–Scherrer geometry; specimens were heated at a rate of 10 K/min. Full-profile diffraction patterns collected every 10 s were refined in sequence using the Rietveld method to track changes of lattice parameters and phase assemblages during heating. Sharp changes observed in the evolution of temperature-dependent lattice parameters suggested formation of ordered structure via nucleation and growth. Both 2-17 polymorphs co-existed in light and heavy rare-earth systems at high temperatures. The presence of alloying additions in the solid solution greatly influenced long-range order formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Khan, Y.: The crystal structures of R2Co17 intermetallic compounds. Acta Crystallogr., Sect. B: Struct. Sci. 29, 2502 1973CrossRefGoogle Scholar
2Wallace, W.E.: Rare earth-transition metal permanent magnet materials. Prog. Solid State Chem. 16, 127 1985Google Scholar
3Zhang, Z.D., Liu, W., Liu, J.P., Sellmyer, D.J.: Metastable phases in rare-earth permanent-magnet materials. J. Phys. D: Appl. Phys. 33, R217 2000CrossRefGoogle Scholar
4Sima, V.: Order–disorder transformations in materials. J. Alloys Compd. 378, 44 2004CrossRefGoogle Scholar
5Physical Metallurgy, 2nd ed. edited by R.W. Cahn North-Holland Publishing Company, Amsterdam 1970 531Google Scholar
6Christian, J.W.: The Theory of Transformations in Metals and Alloys Pergamon Press Headington Hill Hall, Oxford, UK 1965 214–216697–703Google Scholar
7Li, X.H., Liu, B.T., Li, W., Sun, H.Y., Wu, D.Q., Zhang, X.Y.: Atomic ordering kinetics of FePt thin films: Nucleation and growth of L10 ordered domains. J. Appl. Phys. 101, 093911 2007CrossRefGoogle Scholar
8Barmak, K., Kim, J., Shell, S.: Calorimetric studies of the A1 to L10 transformation in FePt and CoPt thin films. Appl. Phys. Lett. 80, 4268 2002CrossRefGoogle Scholar
9Shield, J.E., Kappers, B.B., Meacham, B.E., Dennis, K.W., Kramer, M.J.: Microstructures and phase formation in rapidly solidified Sm-Fe alloys. J. Alloys Compd. 351, 106 2003CrossRefGoogle Scholar
10Aich, S., Kostogorova, J., Shield, J.E.: Magnetic behavior of Sm–Co-based permanent magnets during order/disorder phase transformations. J. Appl. Phys. 97, 10H108 2005Google Scholar
11Kostogorova-Beller, Y.Y., Shield, J.E., Kramer, M.J.: Order– disorder transformations in Sm–Co and Sm–Co–ZrC systems with 2-17 stoichiometry. J. Appl. Phys. 101, 09K521 2007CrossRefGoogle Scholar
12Gray, L.J., Chisholm, M.F., Kaplan, T.: Surface strains in epitaxial systems. Appl. Phys. Lett. 66, 1924 1995Google Scholar
13Kim, C., Robinson, I.K., Spila, T., Greene, J.E.: Local strain relaxation in Si0.7Ge0.3 on Si(001) induced by Ga+ irradiation. J. Appl. Phys. 83, 7608 1998Google Scholar
14Buta, F., Sumption, M.D., Collings, E.W.: Influence of transformation heat treatment on microstructure and defects in RHQT-processed Nb3Al. IEEE Trans. Appl. Supercond. 13, 3458 2003CrossRefGoogle Scholar
15Peterson, P.F., Proffen, Th., Jeong, I-K., Billinge, S.J.L., Choi, K-S., Kanatzidis, M.G., Radaelli, P.G.: Local atomic strain in ZnSi1−xTex from high real space resolution neutron pair distribution function measurements. J. Appl. Crystallogr. 33, 1192 2000Google Scholar
16Aich, S., Shield, J.E.: A study on the order–disorder phase transformations of rapidly solidified Sm–Co-based permanent magnets. J. Magn. Magn. Mater. 313, 76 2007CrossRefGoogle Scholar
17Kostogorova, J., Shield, J.E.: Magnetic behavior of rapidly solidified Pr-Co alloys with the TbCu7-type structure. J. Appl. Phys. 99, 08B514 2006CrossRefGoogle Scholar
18Huang, M.Q., Wallace, W.E., McHenry, M., Chen, Q., Ma, B.M.: Structure and magnetic properties of SmCo7−xZrx alloys (x = 0 to 0.8). J. Appl. Phys. 83, 6718 1998CrossRefGoogle Scholar
19Jiang, C., Venkatesan, M., Gallagher, K., Coey, J.M.D.: Magnetic and structural properties of SmCo7−xTix magnets. J. Magn. Magn. Mater. 236, 49 2001CrossRefGoogle Scholar
20Meacham, B.E., Shield, J.E., Branagan, D.J.: Control of ordering and microstructure in Pr–Co and Sm–Fe alloys for permanent magnets. IEEE Trans. Magn. 37, 2503 2001CrossRefGoogle Scholar
21Buschow, K.H.J., Van Der Goot, A.S.: Intermetallic compounds in the system samarium-cobalt. J. Less Common Met. 14, 323 1968CrossRefGoogle Scholar
22Buschow, K.H.J., Broeder, F.J.A. Den: The cobalt-rich regions of the samarium-cobalt and gadolinium-cobalt phase diagrams. J. Less Common Met. 33, 191 1973CrossRefGoogle Scholar
23Cataldo, L., Lefevre, A., Ducret, F., Cohen-Adad, M-Th., Allibert, C., Valignat, N.: Binary system Sm–Co: Revision of the phase diagram in the Co rich field. J. Alloys Compd. 241, 216 1996CrossRefGoogle Scholar
24Rani, R., Hedge, H., Navarathna, A., Chen, K., Cadieu, F.J.: Synthesis and properties of magnetically hard two element Sm5Fe17 phase in sputtered films. IEEE Trans. Magn. 28, 2835 1992CrossRefGoogle Scholar
25Stadelmaier, H.H., Schneider, G., Henig, E-Th., Ellner, M.: Magnetic Fe17R5 in the Fe–Nd and Fe(–Ti)–Sm systems, and other phases in Fe–Nd. Mater. Lett. 10, 303 1991Google Scholar
26Leccabue, F., Panizzieri, R., Bocelli, G., Calestani, G., Sanchez, J.L.: Magnetic and structural study of high-coercivity as-cast rare-earth-iron alloys. Mater. Lett. 11, 124 1991Google Scholar
27Cadieu, F.J., Hegde, H., Rani, R., Navarathna, A., Chen, K.: Cell volume expansion in Sm5(Fe, T)17, T = Ti, V, magnetic phases. Mater. Lett. 11, 284 1991CrossRefGoogle Scholar
28Kramer, M.J., Margulies, L., McCallum, R.W., Finnemore, D.K., Goldman, A.I., Kycia, S., Lee, P.L., Haeffner, D.R.: Time-resolved studies of phase transformations using high-temperature powder diffraction. AIP Conf. Proc. 521, 141 2000Google Scholar
29Yang, N., Dennis, K.W., McCallum, R.W., Kramer, M.J., Zhang, Y., Lee, P.L.: Spontaneous magnetostriction in R2Fe14B (R = Y, Nd, Gd, Tb, Er). J. Magn. Magn. Mater. 295, 65 2005CrossRefGoogle Scholar
30Jourdan, C., Grange, G., Gastaldi, J.: In situ investigation by synchrotron x-ray topography of titanium recrystallization induced by phase transformation. J. Less Common Met. 159, 53 1990CrossRefGoogle Scholar
31Dehmas, M., Weisbecker, P., Geandier, G., Archambault, P., Aeby-Gautier, E.: Experimental study of phase transformations in 3003 aluminum alloys during heating by situ high energy x-ray synchrotron radiation. J. Alloys Compd. 400, 116 2005CrossRefGoogle Scholar
32Kostogorova-Beller, Y.Y., Kramer, M.J., Shield, J.E.: Phase formation in rapidly solidified R2T17 intermetallics. J. Alloys Compd. 463, 207 2008CrossRefGoogle Scholar
33Margulies, L., Kramer, M.J., McCallum, R.W.: New high temperature furnace for structure refinement by powder diffraction in controlled atmosphere using synchrotron radiation. Rev. Sci. Instrum. 70, 3554 1999CrossRefGoogle Scholar
34Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Hausermann, D.: Two-dimensional detector software: From real detector to idealized image or two-theta scan. High Pressure Res. 14, 235 1996Google Scholar
35Larson, A.C., Von Dreele, R.B.: General Structure Analysis System (GSAS). Los Alamos National Laboratory Rep. No. LAUR 86, 748 2000Google Scholar
36Toby, B.H.: EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210 2000Google Scholar
37Baker, H.: ASM Handbook. Phase Diagrams. Vol. 3 ASM International Materials Park, OH 1997Google Scholar
38Schneider, G., Landgraf, F.J.G., Villas-Boas, V., Bezerra, G.H., Missell, F.P., Ray, A.E.: New stable phase in binary Fe-Nd system. Mater. Lett. 8, 472 1989CrossRefGoogle Scholar
39Schnitzke, K., Schultz, L., Wecker, J., Katter, M.: Sm–Fe–Ti magnets with room-temperature coercivities above 50 kOe. Appl. Phys. Lett. 56, 587 1990CrossRefGoogle Scholar
40Kamprath, N., Qian, X.R., Hegde, H., Cadieu, F.J.: Magnetic properties of Sm–Fe–Ti–Al sputtered films with iHc greater than 30 kOe. J. Appl. Phys. 67, 4948 1990Google Scholar