Published online by Cambridge University Press: 01 June 2005
A thin-frame nano-network film of titania with backbone diameter of 20–30 nm was obtained from precursor templating of nano-porous polymer with nano-channels 50 nm in width. The nano-porous polymer templates were prepared by selective removal of the polyisoprene (PI) domain with ozone from the bicontinuous structure formed through blending a symmetric polystyrene-block-polyisoprene (PS-b-PI) copolymer with a PS homopolymer (h-PS). The titania network possessed the preferred anatase crystallinity for photocatalytic applications and a specific surface area of 53 m2/g, comparable to that of Degussa P25, a widely used commercial photocatalyst. Photocatalytic performance of the fractured titania network film was also comparable to that of Degussa P25 in both gas-phase NO oxidation and liquid phase methylene blue degradation. The much larger overall structure size of the fractured titania network film, however, offers advantages over the nano-particulate form of P25, namely, easy handling and rapid recycling from treated streams.