Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T05:18:31.817Z Has data issue: false hasContentIssue false

Topographic/structure changes of implanted Si3N4

Published online by Cambridge University Press:  31 January 2011

D.W. Oblas
Affiliation:
GTE Laboratories, Waltham, Massachusetts 02254
V.K. Sarin*
Affiliation:
GTE Laboratories, Waltham, Massachusetts 02254
K. Ostreicher
Affiliation:
GTE Laboratories, Waltham, Massachusetts 02254
*
a)Present address: Bosto University, College of Engineering, 44 Cummington Street, Boston, Massachusetts 02215.
Get access

Abstract

A series of investigations were carried out to evaluate the topographic and structural effects of ion implantation on monolithic Si3N4 ceramic surfaces. Implantations were performed with N2, Ne, or Ar in the fluence range of 2.0 × 1016 to 4 × 1017 particles/cm2 and implant voltages of 125 to 200 keV, depending on the mass of the implanted species. Single crystal Si and SiC were also examined for comparative purposes. Noble gases produced blisters on Si3N4 and significant increases in surface expansion. TEM examination of the Si3N4 blister shell showed a distribution of small bubbles, ranging in size from 5 to 300 nm, depending upon the type of Si3N4, and a transformation of the original crystalline structure into an amorphous phase. Analysis of the blister shell, using electron energy loss spectrometry (EELS) and energy dispersive x-ray spectrometry (EDXS) showed that a significant quantity of the implanted Ar was still present in the blister (skin).

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Picraux, S.T., Annu. Rev. Mater. Sci., edited by Huggins, R. A., Giordmaine, J. A., and Wachtman, J. B., Jr., 14, 335 (1984).CrossRefGoogle Scholar
2.Burnett, P.J. and Page, T.F., Conf. Proc. of the Brit. Ceram. Soc, Ceramic Surfaces and Surface Treatments, 34, London (Dec. 1983).Google Scholar
3.McHargue, C.J., Appleton, B.R., and White, C.W., NATO-ASI, Surface Engineering, edited by Kossowsky, R. and Singhal, S. C., NATO ASI Series (Martinus Nijhoff Pub., The Hague, 1984).Google Scholar
4.Burnett, P.J. and Page, T.F., J. Mater. Sci. 19, 3524 (1984).CrossRefGoogle Scholar
5.Hioki, T, Itoh, A., Noda, S., Doi, H., Kawamoto, J., and Kamigaito, O., J. Mater. Sci. Lett. 3, 1099 (1984).CrossRefGoogle Scholar
6.White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mater. Sci. Rep. 4 (23), July (1989).CrossRefGoogle Scholar
7.Churchman, A. T., Barnes, R. S., and Cottrell, A. H., J. Nucl. Mater. 7, 88 (1958).Google Scholar
8.Klueh, R.L., Sci. Technol. 5 (Oct. 1969).Google Scholar
9.Knuyt, G., D'Olieslaeger, M., DeScheppa, L., and Stals, L., Mater. Sci. Eng. 98, 523 (1988).CrossRefGoogle Scholar
10.Farlow, G.C., McHargue, C.J., White, C.W., and Appleton, B.R., Rad. Eff. 97, 257 (1986).CrossRefGoogle Scholar
11.McHargue, C.J, Farlow, G.C., Lewis, M.B., and Williams, J.M., Nucl. Instrum. Methods B19/20, 809 (1987).CrossRefGoogle Scholar
12.Miyagawa, S., Ato, Y., and Miyagawa, Y., J. Appl. Phys. 54 (5), 2302 (1983).CrossRefGoogle Scholar
13.Roberts, S. G. and Page, T. F., J. Mater. Sci. 21, 457 (1986).CrossRefGoogle Scholar
14.Bhattacharya, R. S., Raiv, A. K., and Pronko, P. P., J. Appl. Phys. 61 (10), 4791 (1987).CrossRefGoogle Scholar
15.Cochran, J., Legg, K. O., and Baldau, G. R., Emergent Process Methods for High Technology Ceramics, edited by Davis, R. F., Palmour, H. III, and Porter, R. L., Mater. Sci. Res. 17, 549, Plenum Press (1984).CrossRefGoogle Scholar
16.Bull, S.J. and Page, T.F., J. Mater. Sci. 23 (12), 4217 (1988).Google Scholar
17. SUSPRE, “Surrey University Sputter Profile Resolution from Energy Deposition”, Surrey University, United Kingdom.Google Scholar
18.Biersack, J.P., Nucl. Instrum. Methods B182/183, 199 (1981).CrossRefGoogle Scholar
19.Gibbons, J.F., Proc. IEEE 60 (6), 1062 (1972).CrossRefGoogle Scholar
20.Ziegler, J. F., The Stopping and Range of Ions in Solids, Ion Implantation: Science and Technology, edited by Ziegler, J. F. (Academic Press, Inc., 1984), p. 51.CrossRefGoogle Scholar
21.Bradley, D. E., Techniques for Electron Microscopy, Replica and Shadowing Techniques, edited by Kay, D.H. (F. A. Davis Co., Philadelphia, PA, 1965), p. 119.Google Scholar
22.Auciello, O., Ion Bombardment Modification of Surfaces: Fundamentals and Applications, edited by Auciello, O. and Kelly, R. (Elsevier Publishing, New York, 1984).Google Scholar
23.Oblas, D.W. and Sarin, V.K., Symposium Proceedings, Ion Implantation and Plasma-Assisted Processes for Industrial Applications, edited by Hochman, R., Solnick-Legg, H., and Legg, K. (ASM INTERNATIONAL, Metals Park, OH, 1988).Google Scholar