Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T10:19:44.308Z Has data issue: false hasContentIssue false

Topography analysis of grit-blasted and grit-blasted-acid-etched titanium implant surfaces using multi-scale measurements and multi-parameter statistics

Published online by Cambridge University Press:  31 January 2011

Guruprasad Sosale
Affiliation:
Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 2K6, Canada
S. Adam Hacking
Affiliation:
Division of Orthopedics, McGill University, Montreal, Quebec H3A 2K6, Canada
Srikar Vengallatore*
Affiliation:
Department of Mechanical Engineering, McGill University, Montreal, Quebec H3A 2K6, Canada
*
a)Address all correspondence to this author. e-mail: srikar.vengallatore@mcgill.ca
Get access

Abstract

Micro texturing of titanium implant surfaces is commonly used to enhance fixation by osseointegration, and devising robust and specific correlations between surface topographic features and implant performance is an area of active current research. In this context, we present a detailed analysis of the topographies of titanium surfaces prepared by grit blasting (GB) and grit blasting followed by acid etching (GB+AE) at two different imaging scales over a full range of statistical parameters. The surfaces were characterized using white light interferometry and atomic force microscopy, and the topographic images were processed to extract the amplitude, spatial, hybrid, and functional parameters of the surface. Although GB+AE surfaces are known to elicit significantly higher bone response than GB surfaces, the topographies differed by less than 20% (over all parameters) when averaged over 242 × 181 μm interferometric images. In contrast, measurements over smaller 25 × 25 μm areas obtained using high-resolution atomic force microscopy indicated that the GB+AE surfaces exhibit a 26% increase in root-mean-square (rms) roughness, a 63% increase in rms slope, a 75% increase in the curvature of the summits, and a 21% increase in surface area over GB surfaces. These results constitute the first identification of rms slope and summit curvatures as important topographic variables that must be considered in ongoing efforts to correlate surface topography with the performance of endosseous titanium implants.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Szmukler-Moncler, S., Perrin, D., Ahossi, V., Magnin, G., Bernard, J.P.: Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage. J. Biomedical Mater. Res. B: Appl. Biomater. 68, 149 2004CrossRefGoogle ScholarPubMed
2Wieland, M., Textor, M., Spencer, N.D., Brunette, D.M.: Wavelength-dependent roughness: A quantitative approach to characterizing the topography of rough titanium surfaces. Int. J. Oral Maxillofac. Implants 16, 163 2001Google ScholarPubMed
3Buser, D., Schenk, R.K., Steinemann, S., Fiorellini, J.P., Fox, C.H., Stich, H.: Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. Biomed. Mater. Res. 25, 889 1991CrossRefGoogle Scholar
4Wong, M., Eulenberger, J., Schenk, R., Hunziker, E.: Effect of surface topology on the osseointegration of implant materials in trabecular bone. J. Biomed. Mater. Res. 29, 1567 1995CrossRefGoogle ScholarPubMed
5Anselme, K., Bigerelle, M.: Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 1, 211 2005CrossRefGoogle ScholarPubMed
6Rupp, F., Scheideler, L., Rehbein, D., Axmann, D., Geis-Gerstorfer, J.: Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 25, 1429 2004CrossRefGoogle ScholarPubMed
7Boyan, B.D., Sylvia, V.L., Liu, Y., Sagun, R., Cochran, D.L., Lohmann, H.C., Dean, D.D., Schwartz, Z.: Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2. Biomaterials 23–24, 2305 1999CrossRefGoogle Scholar
8Boyan, B.D., Batzer, R., Kieswetter, K., Liu, Y., Cochran, D.L., Szmuckler-Moncler, S., Dean, D.D., Schwartz, Z.: Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1α 25-(OH)2D3. J. Biomed. Mater. Res. 39, 77 19973.0.CO;2-L>CrossRefGoogle Scholar
9Hacking, S.A., Tanzer, M., Harvey, E.J., Krygier, J.J., Bobyn, J.D.: Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings. Clin. Orthop. 405, 24 2002CrossRefGoogle Scholar
10Arvidsson, A., Sater, B.A., Wennerberg, A.: The role of functional parameters for topographical characterization of bone-anchored implants. Clin. Implant Dent. Relat. Res. 8(2), 70 2006CrossRefGoogle ScholarPubMed
11Goransson, A., Gretzer, C., Johansson, A., Sul, Y.T., Wennerberg, A.: Inflammatory response to a titanium surface with potential bioactive properties: An in vitro study. Clin. Implant Dent. Relat. Res. 8, 210 2006CrossRefGoogle ScholarPubMed
12Wennerberg, A., Albrektsson, T., Lausmaa, J.: Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25-μm and 75-μm-sized particles of Al2O3. J. Biomed. Mater. Res. 30, 251 19963.0.CO;2-P>CrossRefGoogle Scholar
13Buser, D., Broggini, N., Wieland, M., Schenk, R.K., Denzer, A.J., Cochran, D.L., Hoffmann, B., Lussi, A., Steinemann, S.G.: Enhanced bone apposition to a chemically modified SLA titanium surface. J. Dent. Res. 83, 529 2004CrossRefGoogle ScholarPubMed
14Refai, A.K., Textor, M., Brunette, D.M., Waterfield, J.D.: Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J. Biomed. Mater. Res. A 70, 194 2004CrossRefGoogle ScholarPubMed
15Szmukler-Moncler, S., Testori, T., Bernard, J.P.: Etched implants: A comparative surface analysis of four implant systems. J. Biomed. Mater. Res. B: Appl. Biomater. 69, 46 2004CrossRefGoogle ScholarPubMed
16Wennerberg, A., Albrektsson, T., Ulrich, H., Krol, J.J.: An optical three-dimensional technique for topographical description of surgical implants. J. Biomed. Eng. 14, 412 1992CrossRefGoogle ScholarPubMed
17Sawase, T., Wennerberg, A., Hallgren, C., Miyamoto, I., Albrektsson, T.: Atomic force microscopic study of commercially available implant abutments. Clin. Implant Dent. Relat. Res. 1, 92 1999CrossRefGoogle ScholarPubMed
18Taborelli, M., Jobin, M., Francois, P., Vaudaux, P., Tonetti, M., Szmukler-Moncler, S., Simpson, J.P., Descouts, P.: Influence of surface treatments developed for oral implants on the physical and biological properties of titanium: (I) Surface characterization. Clin. Oral Implants Res. 8, 208 1997CrossRefGoogle ScholarPubMed
19Covani, U., Giacomelli, L., Krajewski, A., Ravaglioli, A., Spotorno, L., Loria, P., Das, S., Nicolini, C.: Biomaterials for orthopedics: A roughness analysis by atomic force microscopy. J. Biomed. Mater. Res. A 82, 723 2007CrossRefGoogle ScholarPubMed
20Mendez-Vilas, A., Donoso, M.G., Gonzalez-Carrasco, J.L., Gonzalez-Martin, M.L.: Looking at the micro-topography of polished and blasted Ti-based biomaterials using atomic force microscopy and contact angle goniometry. Colloids Surf. B: Biointerfaces 52, 157 2006CrossRefGoogle ScholarPubMed
21Hansson, S., Hansson, K.N.: The effect of limited lateral resolution in the measurement of implant surface roughness: A computer simulation. J. Biomed. Mater. Res. 75A, 472 2005CrossRefGoogle Scholar
22Thomas, T.R.: Rough Surfaces, 2nd edImperial College Press UK 1999Google Scholar
23Vorburger, T.V., Rhee, H.G., Renegar, T.B., Song, J.F., Zheng, A.: Comparison of optical and stylus methods for measurement of surface texture. Int. J. Adv. Manuf. Technol. 33, 110 2007CrossRefGoogle Scholar
24Meyer, E., Hug, H.J., Bennewitz, R.: Scanning Probe Microscopy Springer New York 2003Google Scholar
25Macdonald, W., Campbell, P., Fisher, J., Wennerberg, A.: Variations in surface texture measurements. J. Biomed. Mater. Res. 70B, 262 2004CrossRefGoogle Scholar
26Deyneka-Dupriez, N., Kocdemir, B., Herr, U., Fecht, H.J., Wilke, H.J., Claes, L.: Interfacial-shear strength of titanium implants in bone is significantly improved by surface topographies with high pit density and microroughness. J. Biomed. Mater. Res. B: Appl. Biomater. 82, 305 2007CrossRefGoogle ScholarPubMed
27Thomas, K.A., Cook, S.D.: An evaluation of variables influencing implant fixation by direct bone apposition. J. Biomed. Mater. Res. 19, 875 1985CrossRefGoogle ScholarPubMed
28D’Lima, D.D., Lemperle, S.M., Chen, P.C., Holmes, R.E., Colwell, C.W. Jr.: Bone response to implant surface morphology. J. Arthroplasty 13, 928 1998CrossRefGoogle ScholarPubMed
29Abrahamsson, I., Berglundh, T., Linder, E., Lang, N.P., Lindhe, J.: Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin. Oral Implants Res. 15, 381 2004CrossRefGoogle ScholarPubMed
30Dong, W.P., Sullivan, P.J., Stout, K.J.: Comprehensive study of parameters for characterising three-dimensional surface topography. III: Parameters for characterising amplitude and some functional properties. Wear 178, 29 1994CrossRefGoogle Scholar
31Dong, W.P., Sullivan, P.J., Stout, K.J.: Comprehensive study of parameters for characterising three-dimensional surface topography. IV: Parameters for characterising spatial and hybrid properties. Wear 178, 45 1994CrossRefGoogle Scholar
32Blunt, L., Jiang, X.: Advanced Techniques for Assessment Surface Topography—Development of a Basis for 3D Surface Texture Standards “SURFSTAND” Kogan Page Science London, UK 2003 pp. 1541Google Scholar
33Wennerberg, A., Albrektsson, T.: Suggested guidelines for the topographic evaluation of implant surfaces. Int. J. Oral Maxillofac. Implants 15, 331 2000Google ScholarPubMed
34Russ, J.C.: The Image Processing Handbook CRC Press Boca Raton, FL 2002CrossRefGoogle Scholar
35Castle, J.E., Zhdan, P.A., Singjai, P.: Enhanced morphological reconstruction of SPM images. J. Phys. D 31, 3437 1998CrossRefGoogle Scholar
36Whitehouse, D.J.: Handbook of Surface and Nanometrology Institute of Physics Publishing Bristol, UK 2003 pp. 233256CrossRefGoogle Scholar
37Zar, J.H.: Biostatistical Analysis, 3rd ed.Prentice-Hall Old Tappan, NJ 1996Google Scholar
38Wennerberg, A., Albrektsson, T., Andersson, B.: An animal study of c.p. titanium screws with different surface topographies. J. Mater. Sci. Mater. Med. 6, 302 1995CrossRefGoogle Scholar
39Zinger, O., Anselme, K., Denzer, A., Habersetzer, P., Wieland, M., Jeanfils, J., Hardouin, P., Landolt, D.: Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25, 2695 2004CrossRefGoogle ScholarPubMed
40Martin, J.Y., Schwartz, Z., Hummert, T.W., Schraub, D.M., Simpson, J., Lankford, J. Jr., Dean, D.D., Cochran, D.L., Boyan, B.D.: Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J. Biomed. Mater. Res. 29, 389 1995CrossRefGoogle ScholarPubMed
41Kieswetter, K., Schwartz, Z., Hummert, T.W., Cochran, D.L., Simpson, J., Dean, D.D., Boyan, B.D.: Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J. Biomed. Mater. Res. 32, 55 19963.0.CO;2-O>CrossRefGoogle ScholarPubMed
42Thomas, T.R., Rosen, B.G., Amini, N.: Fractal characterisation of the anisotropy of rough surfaces. Wear 232, 41 1999CrossRefGoogle Scholar