Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T12:38:38.841Z Has data issue: false hasContentIssue false

Toward a metrological calibration of the conversion efficiency in GaAs nanowire-based photodetectors

Published online by Cambridge University Press:  12 July 2017

Davide Cammi*
Affiliation:
Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig University of Technology, Braunschweig D38106, Germany
Beatrice Rodiek
Affiliation:
Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 38116, Germany
Kseniia Zimmermann
Affiliation:
Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig University of Technology, Braunschweig D38106, Germany
Stefan Kück
Affiliation:
Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 38116, Germany
Tobias Voss
Affiliation:
Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), TU Braunschweig University of Technology, Braunschweig D38106, Germany
*
a) Address all correspondence to this author. e-mail: d.cammi@tu-braunschweig.de
Get access

Abstract

We describe the main experimental challenges toward the metrological calibration of photodetectors based on single semiconductor nanowires, and we propose a method for the quantification of their photoresponse, focusing in particular on GaAs nanowires. Spatially resolved measurements of the device’s photocurrent were performed with a far-field scanning optical setup and a laser excitation at λ = 656 nm. The photoresponse was quantitatively described by fitting the two-dimensional mapping of the photocurrent at different positions along the main nanowire axis. Our results indicate that the device’s photoresponse strongly depends on the position along the nanowire, which is attributed to the inhomogeneous properties of the device’s contacts. Furthermore, we show that its spatial profile across the nanowire can be directly compared with the profile of the laser beam by taking into account the angle between the scanning direction and the main nanowire axis as a geometrical factor. Finally, we discuss the impacts of laser-induced heating effects on the calibration of such nanoscale devices.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Winston V. Schoenfeld

References

REFERENCES

Lieber, C.M.: Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull. 36, 1052 (2011).CrossRefGoogle ScholarPubMed
Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., and Lieber, C.M.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007).CrossRefGoogle ScholarPubMed
Colombo, C., Heibeta, M., Gratzel, M., and Fontcuberta i Morral, A.: Gallium arsenide p–i–n radial structures for photovoltaic applications. Appl. Phys. Lett. 94, 173108 (2009).Google Scholar
Huang, Y., Duan, X., and Lieber, C.M.: Nanowires for integratedmulticolor nanophotonics. Small 1, 142 (2005).Google Scholar
Bao, J., Zimmler, M., Capasso, F., Wang, X., and Ren, Z.: Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6, 1719 (2006).Google Scholar
Hayden, O., Greytak, A., and Bell, D.: Core–shell nanowire light emitting diodes. Adv. Mater 17, 701 (2006).Google Scholar
Soci, C., Zhang, A., Bao, X-Y., Kim, H., Lo, Y., and Wang, D.: Nanowire photodetectors. J. Nanosci. Nanotechnol. 10, 1430 (2010).CrossRefGoogle ScholarPubMed
Hayden, O., Agarwal, R., and Lieber, C.M.: Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 5, 352 (2006).Google Scholar
Kind, H., Yan, H., Messer, B., Law, M., and Yang, P.: Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158 (2002).Google Scholar
Chen, X., Wong, C.K.Y., Yuan, C.A., and Zhang, G.: Nanowire-based gas sensors. Sens. Actuators, B 177, 178 (2013).Google Scholar
Comini, E., Baratto, C., Faglia, G., Ferroni, M., Ponzoni, A., Zappa, D., and Sberveglieri, G.: Metal oxide nanowire chemical and biochemical sensors. J. Mater. Res. 28, 2911 (2013).CrossRefGoogle Scholar
Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).CrossRefGoogle ScholarPubMed
Yan, R., Gargas, D., and Yang, P.: Nanowire photonics. Nat. Photonics 3, 569 (2009).CrossRefGoogle Scholar
Voss, T., Svacha, G.T., Mazur, E., Müller, S., Ronning, C., Konjhodzic, D., and Marlow, F.: High-order waveguide modes in zno nanowires. Nano Lett. 7, 3675 (2007).CrossRefGoogle ScholarPubMed
Röder, R., Wille, M., Geburt, S., Rensberg, J., Zhang, M., Lu, J.G., Capasso, F., Buschlinger, R., Peschel, U., and Ronning, C.: Continuous wave nanowire lasing. Nano Lett. 13, 3602 (2013).Google Scholar
Richter, C.A., Xiong, H.D., Zhu, X., Wang, W., Stanford, V.M., Hong, W-K., Lee, T., Ioannou, D.E., and Li, Q.: Metrology for the electrical characterization of semiconductor nanowires. IEEE Trans. Electron Devices 55, 3086 (2008).CrossRefGoogle Scholar
Dagata, J.A., Richter, C.A., Silver, R.M., Vogel, E.M., and Martinez de Pinillos, J.V.: Metrology development for the nanoelectronics industry at the national institute for standards and technology. NSTI-Nanotech 2004, 3 (2004). Available at: www.nsti.org, ISBN 0-9728422-9-2.Google Scholar
Prades, J.D., Jimenez-Diaz, R., Hernandez-Ramirez, F., Fernandez-Romero, L., Andreu, T., Cirera, A., Romano-Rodriguez, A., Cornet, A., Ramon Morante, J., Barth, S., and Mathur, S.: Toward a systematic understanding of photodetectors based on individual metal oxide nanowires. J. Phys. Chem. C 112, 14639 (2008).Google Scholar
Boland, J., Conesa-Boj, S., Parkinson, P., Tütüncüoglu, G., Matteini, F., Ruffer, D., Amaduzzi, C.A.A., Jabeen, F., Davies, C., Joyce, H., Fontcuberta i Morral, A., and Johnston, M.: Modulation doping of GaAs/AlGaAs core–shell nanowires with effective defect passivation and high electron mobility. Nano Lett. 15, 1336 (2015).CrossRefGoogle ScholarPubMed
Matteini, F., Tütüncüoglu, G., Mikulik, D., Vukajlovic-Plestina, J., Potts, H., Leran, J.B., Carter, W.C., and Fontcuberta i Morral, A.: Impact of the Ga droplet wetting, morphology, and pinholes on the orientation of GaAs nanowires. Cryst. Growth Des. 16, 5781 (2016).Google Scholar
Russo-Averchi, E., Heiss, M., Michelet, L., Krogstrup, P., Nygard, J., Magen, C., Morante, J.R., Uccelli, E., Arbiol, J., and Fontcuberta i Morral, A.: Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon. Nanoscale 4, 1486 (2012).Google Scholar
Casadei, A., Alarcon Llado, E., Amaduzzi, F., Russo-Averchi, E., Rüffer, D., Heissm, M., Dal Negro, L., and Fontcuberta i Morral, A.: Polarization response of nanowires à la carte. Sci. Rep. 7, 7651 (2015).CrossRefGoogle Scholar
Online source: NCCR “QSIT—Quantum Science and Technology”: Automated e-Beam (2014). Available at: http://www.nccr-qsit.ethz.ch/technology-transfer/qstarter/current-projects/automated-e-beam.html. Google Scholar
Blanc, P., Heiss, M., Colombo, C., Mallorquì, A.D., Safaei, T.S., Krogstrup, P., Nygård, J., and Fontcuberta i Morral, A.: Electrical contacts to single nanowires: A scalable method allowing multiple devices on a chip. Application to a single nanowire radial p–i–n junction. Int. J. Nanotechnol. 10, 419 (2013).Google Scholar
Gutsche, C., Lysov, A., Regolin, I., and Brodt, A.: Ohmic contacts to n-GaAs nanowires. J. Appl. Phys. 110, 014305 (2011).Google Scholar
Rodiek, B., Lopez, M., Hofer, H., Porrovecchio, G., Smid, M., Chu, X.L., Gotzinger, S., Sandoghdar, V., Lindner, S., Becher, C., and Kück, S.: Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond. Optica 4, 71 (2017).Google Scholar
Gu, Y., Kwak, E-S., Lensch, J.L., Allen, J.E., Odom, T.W., and Lauhon, L.J.: Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87, 043111 (2005).Google Scholar
Thunich, S., Prechtel, L., Spirkoska, D., Abstreiter, G., Fontcuberta i Morral, A., and Holleitner, A.: Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett. 95, 083111 (2009).CrossRefGoogle Scholar
Chunnilall, C.J., Degiovanni, I.P., Kück, S., Müller, I., and Sinclair, A.G.: Metrology of single-photon sources and detectors: A review. Opt. Eng. 53, 081910 (2014).CrossRefGoogle Scholar