Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T19:19:32.189Z Has data issue: false hasContentIssue false

Tracer diffusion of Ba and Y in YBa2Cu3Ox

Published online by Cambridge University Press:  31 January 2011

Nan Chen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
S.J. Rothman
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
J.L. Routbort
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
K.C. Goretta
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Tracer self-diffusion of Ba and Y and the diffusion of Dy, Ho, and Gd, which substitute for Y, have been measured in polycrystalline YBa2Cu3Ox over temperature and oxygen partial pressure ranges of 850 to 980 °C and 103 to 105 Pa, respectively. The diffusion of Ba is slower than that of oxygen or copper, with a high activation energy of about 890 ± 80 kJ/mole. Large anisotropy has also been observed, with diffusion along the c-axis being more than three orders of magnitude slower than diffusion in randomly oriented polycrystals. Diffusion coefficients of Ba were, within experimental uncertainty, independent of oxygen partial pressure over the range measured. The diffusion coefficients of the Y-site species were nearly identical and an activation energy of about 1.0 MJ/mole was estimated, in agreement with that for high-temperature deformation. Attempts to speed up the kinetics through creation of point defects on the Y site by doping proved to be unsuccessful. These results are compared to cation diffusion in cubic perovskites and simple oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rothman, S. J., Routbort, J. L., and Baker, J. E., Phys. Rev. B 40, 8852 (1989).CrossRefGoogle Scholar
2.Rothman, S. J., Routbort, J. L., Welp, U., and Baker, J. E., Phys. Rev. B 44, 2326 (1991).CrossRefGoogle Scholar
3.Tu, K. N., Park, S. I., and Tsuei, C. C., Appl. Phys. Lett. 51, 2158 (1987).CrossRefGoogle Scholar
4.Tu, K. N., Yeh, N. C., Park, S. I., and Tsuei, C. C., Phys. Rev. B 39, 304 (1989).CrossRefGoogle Scholar
5.Matsui, T., Naito, K., and Hagino, S., Non-Stoichiometric Compounds–Surface Grain Boundaries and Structural Defects, edited by Nowotny, J. and Weppner, W. (Kluwer Acad. Pub., Dordrecht, Germany, 1989), p. 471.CrossRefGoogle Scholar
6.Turrillas, X., Kilner, J. A., Kontoulis, I., and Steele, B. C. H., J. Less-Common Met. 151, 229 (1989).CrossRefGoogle Scholar
7.Maier, J., Murugaraj, P., Pfundtner, G., and Sitte, W., Ber. Bunsenges Phys. Chem. 93, 1350 (1989).CrossRefGoogle Scholar
8.Sabras, J., Peraudeau, G., Rejoan, R., and Monty, C., J. Less-Common Met. 165–164, 239 (1990).CrossRefGoogle Scholar
9.Tallon, J.L. and Staines, M.P., J. Appl. Phys. 68, 3990 (1990).CrossRefGoogle Scholar
10.Gupta, D., Laibowitz, R. B., and Lacey, J. A., Phys. Rev. Lett. 64, 2675 (1990).CrossRefGoogle Scholar
11.Gupta, D., Shinde, S. L., and Laibowitz, R. B., in High Temperature Superconducting Compounds II, edited by Whang, S. H., Gupta, A. Das, and Laibowitz, R. B. (TMS, Warrendale, PA, 1990), p. 377.Google Scholar
12.Chen, N., Rothman, S. J., and Routbort, J. L., J. Appl. Phys. 68, 2523 (1990).CrossRefGoogle Scholar
13.Routbort, J.L., Rothman, S. J., Chen, N., Mundy, J. N., and Baker, J. E., Phys. Rev. B 43, 5489 (1991).CrossRefGoogle Scholar
14.Chen, N., Ph.D. Thesis, Illinois Institute of Technology, 1991.Google Scholar
15.Rothman, S. J., Chen, N., and Routbort, J. L., in High Temperature Superconducting Compounds III, edited by Whang, S. H., Gupta, A. Das, and Collings, E. (TMS, Warrendale, PA, 1991), p. 399.Google Scholar
16.Zhang, K., Dabrowski, B., Segre, C. U., Hinks, D. G., Schuller, I. K., Jorgensen, J. D., and Slaski, M., J. Phys. C 20, L935 (1987).CrossRefGoogle Scholar
17.Page, Y. Le, Siegrist, T., Sunshine, S. A., Schneemeyer, L. F., Murphy, D. W., Zahurak, S. M., Waszczak, J. V., Mckinnon, W. R., Tarascon, J. M., Hull, G. W., and Greene, L. H., Phys. Rev. B 36, 3617 (1987).CrossRefGoogle Scholar
18.Reyes-Morel, P. E., Wu, X., and Chen, I-W., in Ceramic Superconductors II, edited by Yan, M. F. (Am. Ceram. Soc, Westerville, OH, 1988), p. 590.Google Scholar
19.Goretta, K.C., Routbort, J.L., Biondo, A.C., Gao, Y., de Arellano-López, A.R., and Domínguez-Rodríguez, A., J. Mater. Res. 5, 2766 (1990).CrossRefGoogle Scholar
20.Burke, T. G. and Lagerlof, K. P. D., Presented at the 93rd Annual Meeting of the American Ceramic Society, Cincinnati, OH, May 1, 1991.Google Scholar
21.de Arellano-López, A. R., Goretta, K. C., Routbort, J. L., Miller, D. J., and Domínguez-Rodríguez, A., Ceram. Acta 3, 5 (1991).Google Scholar
22.Routbort, J.L., Goretta, K. C., Miller, D. J., Kazelas, D. E., Clauss, C., and Domínguez-Rodríguez, A., J. Mater. Res. 7, 2360 (1992).CrossRefGoogle Scholar
23.Shi, D., Goretta, K. C., Biondo, A. C., and Chen, J. G., Ceram. Trans. 18, 373 (1991).Google Scholar
24.Mundy, J.N. and Rothman, S. J., J. Vac. Technol. 1, 74 (1983).CrossRefGoogle Scholar
25.Crank, J., The Mathematics of Diffusion (Oxford University Press, London, 1956).Google Scholar
26.SAS Users' Guide, Statistics (SAS Institute, Cary, NC, 1985), p. 575.Google Scholar
27.Goretta, K. C., Poeppel, R. B., Shi, D., Chen, N., Rothman, S. J., Routbort, J. L., and Stoessel, J. P., Ceram. Trans. 13, 369 (1990).Google Scholar
28.Cannon, W. R. and Langdon, T. G., J. Mater. Sci. 18, 1 (1983).CrossRefGoogle Scholar
29.Nowotny, J., Rekas, M., and Weppner, W., J. Am. Ceram. Soc. 73, 1040 (1990).CrossRefGoogle Scholar
30.Baetzold, R. C., Physica C 181, 252 (1991).CrossRefGoogle Scholar
31.Baetzold, R. C., private communication (1992).Google Scholar
32.Zhao, Y., Liu, H. K., and Dou, S. X., Physica C 179, 207 (1991).CrossRefGoogle Scholar
33.Andreas, M.T. and Kingon, A.I., Chem. Mater. 3, 428 (1991).CrossRefGoogle Scholar
34.Jírak, Z., Hejmánek, J., Pollert, E., Tríska, A., and Vasek, P., Physica C 156, 750 (1988).CrossRefGoogle Scholar
35.Tokiwa, A., Syono, Y., Kikuchi, M., Suzuki, R., Kajitani, T., Kobayashi, N., Sasaki, T., Nakatsu, O., and Muto, Y., Jpn. J. Appl. Phys. 27, L1009 (1988).CrossRefGoogle Scholar
36.Chandrachood, M. R., Mulla, I. S., Gorwadkar, S. M., and Sinha, A. P. B., Appl. Phys. Lett. 56, 183 (1990).CrossRefGoogle Scholar
37.Poddar, A., Mandal, P., Choudhury, P., Das, A. N., and Ghosh, B., J. Phys. C 21, 3323 (1988).CrossRefGoogle Scholar
38.Régnier, P., Gupta, R. P., and Truchot, P., J. Phys. C 21, L463 (1988).CrossRefGoogle Scholar
39.Berard, M. F. and Wilder, D. R., J. Am. Ceram. Soc. 52, 85 (1969).CrossRefGoogle Scholar
40.Jorgensen, J.D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., and Schuller, Ivan K., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
41.Verduch, A.G. and Lindner, R., Arkiv. Kemi. 5, 313 (1953).Google Scholar
42.Shimanovich, I. E., Pavlyuchenko, M. M., Filinov, B. O., and Prokudina, S. A, Vestni. Akad. Nauk. BSSR Ser. Kim. Nauk. 6, 61 (1969).Google Scholar
43.Turlier, P., Brassiére, P., and Prettre, M., Compt. Rend. Acad. Sci. Paris 250, 1649 (1960).Google Scholar
44.Pavlyuchenko, M. M., Filonov, B. O., Shimanovich, I. E., and Prokudina, S. A., Dokl. Akad. Nauk. BSSR 24, 328 (1970).Google Scholar
45.Lyubimov, A. P., Kalashnikov, A. A., and Nuriddinov, B., Dokl. Akad. Nauk. 29, 24 (1972).Google Scholar
46. Melting points for the cubic perovskites were obtained from Phase Diagrams for Ceramists (Am. Ceram. Soc, Westerville, OH, 1983), Vol. I-V.Google Scholar
47.Murarka, S.P. and Swalin, R.A., J. Phys. Chem. Sol. 32, 2015 (1971).CrossRefGoogle Scholar
48.Zollweg, R.J., Phys. Rev. 100, 671 (1955).CrossRefGoogle Scholar
49.Santoro, A., Miraglia, S., Beech, F., Sunshine, S. A., Murphy, D. W., Schneemeyer, L. F., and Waszczak, J. V., Mater. Res. Bull. XXII, 1007 (1987).CrossRefGoogle Scholar
50.Kristallogr, Z.., u., MineralPetrogr. Abt. A 2, 38 (1937).Google Scholar
51.Chen, N., Shi, D., and Goretta, K. C., J. Appl. Phys. 66, 2485 (1989).CrossRefGoogle Scholar