Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T19:35:05.118Z Has data issue: false hasContentIssue false

Transformation of Al–Ni–(Si) decagonal quasicrystals to 1–D quasicrystal and crystalline approximants

Published online by Cambridge University Press:  03 March 2011

X.Z. Li
Affiliation:
Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, P.O. Box 2724, 100080 Beijing, People's Republic of China
K.H. Kuo
Affiliation:
Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, P.O. Box 2724, 100080 Beijing, People's Republic of China
Get access

Abstract

Rapidly quenched Al86-xNi14Six (x = 0, 2, 6, and 10) alloys have been studied by means of transmission electron microscopy. Two-dimensional (2-D) decagonal quasicrystal with a periodicity of 1.6 nm along its tenfold axis was found in the rapidly quenched Al86Ni14 binary alloy. With the addition of some silicon, such as AlgoNi14Si6, the 2-D decagonal quasicrystal first transforms to a one-dimensional (1-D) quasicrystal that inherits the periodicity along the tenfold axis and has, in addition, translation periodicity in one of the twofold axes of the decagonal phase, and finally transforms to a new orthorhombic crystalline phase (a = 0.78, b = 1.62, and c = 1.48 nm). In the Al76Ni14Si10 ternary alloy, a 2-D decagonal quasicrystal with a periodicity of 0.4 nm and a coexisting crystalline phase with the “Al3Ni2” structure were found, and their orientational relationship has been determined.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bendersky, L., Phys. Rev. Lett. 55, 1461 (1985).CrossRefGoogle Scholar
2Chattopadhyay, K., Lele, K. S., Ranganathan, S., Subbanna, G. N., and Thangaraj, N., Current Science 54, 895 (1985).Google Scholar
3Fung, K. K., Yang, C. Y., Zhou, Y. Q., Zhao, J. G., Zhan, W. S., and Shen, B. G., Phys. Rev. Lett. 56, 2060 (1986).CrossRefGoogle Scholar
4Dong, C., Li, G. B., and Kuo, K. H., J. Phys. F: Met. Phys. 17, L186 (1987).CrossRefGoogle Scholar
5Bancel, P. A. and Heiny, P. A., Phys. Rev. B 33, 7917 (1986).CrossRefGoogle Scholar
6Li, X. Z. and Kuo, K. H., Philos. Mag. Lett. 58, 167 (1988).CrossRefGoogle Scholar
7He, L. X., Wu, Y. K., and Kuo, K. H., J. Mater. Sci. Lett. 7, 1284 (1988).CrossRefGoogle Scholar
8Tsai, A. P., Inoue, A., and Masumoto, T., Trans. Jpn. Inst. Met. 30, 308 (1989).Google Scholar
9Fung, K. K., Zhou, X. D., and Yang, C. Y., Philos. Mag. Lett. 55, 27 (1987).CrossRefGoogle Scholar
10Fitzgerald, J. D., Withers, R. L., Stewart, A. M., and Calka, A., Philos. Mag. B 63, 687 (1988).Google Scholar
11Dong, C., Dubois, J. M., and Song, K. K., Philos. Mag. B 65, 107 (1992).CrossRefGoogle Scholar
12Zhang, H. and Kuo, K. H., Phys. Rev. B 42, 8907 (1990).CrossRefGoogle Scholar
13Kumar, V., Sahoo, D., and Athithan, G., Phys. Rev. B 34, 6924 (1986).CrossRefGoogle Scholar
14Li, X. Z. and Kuo, K. H., Philos. Mag. B 65, 525 (1992).CrossRefGoogle Scholar
15He, L. X., Li, X. Z., Zhang, Z., and Kuo, K. H., Phys. Rev. Lett. 61, 1116 (1988).CrossRefGoogle Scholar
16Zhang, H. and Kuo, K. H., Phys. Rev. B 41, 3482 (1990).CrossRefGoogle Scholar
17Taylor, M. A., Acta Crystallogr. 14, 84 (1961).CrossRefGoogle Scholar
18Ma, L., Wang, R., and Kuo, K. H., J. Less-Comm. Met. 163, 37 (1990).CrossRefGoogle Scholar
19van Tendeloo, G. and Amelinckx, S., Acta Crystallogr. A 30, 431 (1974).CrossRefGoogle Scholar
20Bradley, A. J. and Taylor, A., Proc. R. Soc. London, Sect. A 159, 56 (1937).Google Scholar