Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T07:45:33.352Z Has data issue: false hasContentIssue false

Transformations in undercooled molten Pd40.5Ni40.5P19

Published online by Cambridge University Press:  31 January 2011

C. W. Yuen
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
H. W. Kui
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Get access

Abstract

It was demonstrated that liquid phase separation by nucleation and growth (LNG) occurs in undercooled molten Pd40.5Ni40.5P19 for undercoolings ΔT ≤ 60 K (ΔT = TlT where Tl is the liquidus and T is the kinetic crystallization temperature), and liquid state spinodal decomposition (LSD) occurs for ΔT ≥ 100. For 60 ≤ ΔT ≤ 100 K, it is the transition regime from LNG to LSD. A ternary phase diagram is introduced to summarize the reactions occurred in undercooled molten Pd40.5Ni40.5P19. Finally, it is suggested that LSD has an important impact on glass-forming ability of metallic alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chen, H. S and Turnbull, D., Acta Metall. 17, 1021 (1969).CrossRefGoogle Scholar
2.Chou, C-P. and Turnbull, D., J. Non-Cryst. Sol. 17, 169 (1975).CrossRefGoogle Scholar
3.Chen, H. S, Mater. Sci 23, 151 (1976).Google Scholar
4.Tanner, L. E. and Ray, R., Scripta Metall. 14, 657 (1980).CrossRefGoogle Scholar
5.Deng, D. and Argon, A. S., Acta Metall. 34, 2011 (1986).CrossRefGoogle Scholar
6.Gerling, R., Schimansky, F. P., and Wagner, R., Nucl. Sci. Eng. 110, 374 (1992).CrossRefGoogle Scholar
7.Busch, R., Schneider, S., Peker, A., and Johnson, W. L., Appl. Phys. Lett. 67, 1544 (1995).CrossRefGoogle Scholar
8.Regan, M. J. and Bienenstock, A., Phys. Rev. B 51, 12 170 (1995).CrossRefGoogle Scholar
9.Fernandez van Raap, M. B., Sanchez, F. H., and Zhang, Y. D., J. Mater. Res. 10, 1917 (1995).CrossRefGoogle Scholar
10.Tumbull, D., J. Chem. Phys. 20, 411 (1952).CrossRefGoogle Scholar
11.Bardenheur, P. and Bleckmann, R., Stahl u. Eisen 61, 49 (1941).Google Scholar
12.Walker, J. L., Principles of Solidification, edited by Chalmers, B. (Wiley, New York, 1964), p. 112.Google Scholar
13.Kui, H. W., Greer, A. L., and Turnbull, D., Appl. Phys. Lett. 45, 615 (1984).CrossRefGoogle Scholar
14.Lau, C. F and Kui, H. W., J. Appl. Phys. 67, 3181 (1990).Google Scholar
15.Lee, K. L and Kui, H. W., unpublished.Google Scholar
16.Yuen, C. W., Lee, K. L., and Kui, H. W., J. Mater. Res. 12, 314 (1997).Google Scholar
17.Kui, H. W. and Turnbull, D., J. Non-Cryst. Solids 94, 62 (1987).CrossRefGoogle Scholar
18.Langer, J. S., Physica (Utrecht) 73, 61 (1974).Google Scholar
19.Bibder, K., Phys. Rev. A 29, 341 (1984).Google Scholar
20.Jayalakshmi, J., Khalil, B., and Beysens, D., Phys. Rev. Lett. 69, 3088 (1992).CrossRefGoogle Scholar
21.Tanaka, H., Phys. Rev. Lett. 65, 3136 (1990).Google Scholar
22.Chen, L. Q., Acta Metall. 42, 3503 (1994).CrossRefGoogle Scholar
23.Seward, T. P., Uhlmann, D. R., and Turnbull, D., J. Am. Ceram. Soc. 51, 634 (1968).Google Scholar
24.Marcus, M. and Turnbull, D., Mater. Sci. Eng. 23, 211 (1976).CrossRefGoogle Scholar