Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T04:21:42.506Z Has data issue: false hasContentIssue false

Transient self-dewetting of steels after pulsed electron beam melting

Published online by Cambridge University Press:  31 January 2011

N. Mingolo
Affiliation:
Facultad de Ingenieri´a de la Universidad de Buenos Aires, Paseo Colón 850, Buenos Aires, Argentina
A. N. Roviglione*
Affiliation:
Facultad de Ingenieri´a de la Universidad de Buenos Aires, Paseo Colón 850, Buenos Aires, Argentina
O. E. Marti´nez*
Affiliation:
Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Get access

Abstract

Experimental evidence of transient self-dewetting of metallic surfaces is presented. Steel surfaces are melted by a pulsed electron gun, and the subsequent fast cooling against its substrate gives rise to the formation of characteristic patterns that we attribute to the dewetting of the liquid film. The patterns formed are similar to those obtained by spinodal dewetting, that is, when the dewetting action develops from a nonlinear instability on the liquid surface, and not from holes nucleation. High-purity iron does not show a similar behavior, indicating that the origin of the instability is due to the influence of the sulfur in the temperature dependence of the surface tension of the melt, which gives rise to a Be’nard-Marangoni instability.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Vrij, A., Discuss. Faraday Soc. 42, 23 (1966).CrossRefGoogle Scholar
2Xie, R., Karim, A., Douglas, J.F., Han, C.C., and Weiss, R.A., Phys. Rev. Lett. 81, 1251 and references therein (1998).CrossRefGoogle Scholar
3Elbaum, M. and Lipson, S.G., Phys. Rev. Lett. 72, 3562 (1994).CrossRefGoogle Scholar
4Sharma, A. and Jameel, A.T., J. Colloid Interface Sci. 161, 190 (1993).CrossRefGoogle Scholar
5Henn, G., Bucknall, D.G., Stamm, M., Vanhorne, P., and Jérôme, R., Macromolecules 29, 4305 (1996).CrossRefGoogle Scholar
6Bischof, J., Scherer, D., Herminghaus, S., and Leiderer, P., Phys. Rev. Lett. 77, 1536 (1996).CrossRefGoogle Scholar
7Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibn-Elhaj, M., and Schalowski, S., Science 282, 916 and references therein (1998).CrossRefGoogle Scholar
8Reiter, G., Science 282, 888 and references therein (1998).CrossRefGoogle Scholar
9Eustathopoulos, N., Nicholas, M.G., and Drevet, B., Wettability at high temperatures (Pergamon, Amsterdam, The Netherlands, 1999).Google Scholar
10Delannay, F., Froyen, L., and Deruyttere, A., J. Mater. Sci. 22, 1 (1987).CrossRefGoogle Scholar
11Mingolo, N., González, C.R., Martínez, O.E., and Rocca, J.J., J. Appl. Phys. 82, 4118 (1997).CrossRefGoogle Scholar
12Mingolo, N., Cesa, Y., Martínez, O.E., Etcheverry, J.I., and Rocca, J.J., IEEE Trans. Plasma Sci. 28, 386 (2000).CrossRefGoogle Scholar
13Cesa, Y., Mingolo, N., and Martínez, O.E., IEEE Trans. Plasma Sci. 28, 1035 (2000).Google Scholar
14Etcheverry, J.I., Martínez, O.E., and Mingolo, N., J. Appl. Phys. 83,3856 and references therein (1998).CrossRefGoogle Scholar
15Etcheverry, J.I., Mingolo, N., Rocca, J.J., and Martínez, O.E., IEEE Trans. Plasma Sci. 25, 427 and references therein (1997).CrossRefGoogle Scholar
16Etcheverry, J.I., Martínez, O.E., and Mingolo, N., Int. J. Appl. Sci. Comput. 5, (1999).Google Scholar
17Von Allmen, M. and Blatter, A., Laser-beam interactions with materials, 2nd ed. (Springer Series in Materials Science, Springer-Verlag. Berlin, Heidelberg, Germany, 1995).CrossRefGoogle Scholar
18Preston, J.S., van Driel, H.M., and Sipe, J.E., Phys. Rev. Lett. 58, 69 (1987).CrossRefGoogle Scholar
19Van Driel, H.M. and Dworschak, K., Phys. Rev. Lett. 69, 3487 (1992).CrossRefGoogle Scholar
20Yeung, C. and Desai, R.C., Phys. Rev. E 49, 2096 (1994).Google Scholar
21Mills, K.C. and Keene, B.J., Int. Mater. Rev. 35, 185 (1990).CrossRefGoogle Scholar
22Keene, B.J., Int. Mater. Rev. 38, 157 (1993).CrossRefGoogle Scholar
23Manneville, P., Estructures dissipatives, chaos et turbulence (Sinclair Ed., Saclay, France, 1992).Google Scholar
24Tsao, K.C. and Wu, C.S., Weld. J. 67, 70s (1988).Google Scholar
25Howe, J.M., Interfaces and Materials (John Wiley and Sons, New York, 1997).Google Scholar
26Quested, P.N., Hayes, D.M., and Mills, K.C., Mater. Sci. Eng. A 173, 371 (1993).CrossRefGoogle Scholar
27Heiple, C.R., Roper, J.R., Stagner, R.T., and Aden, R.J., Weld. J. 62, 72s (1983).Google Scholar