Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T16:43:20.088Z Has data issue: false hasContentIssue false

Transmission Electron Microscopy and High-Resolution Transmission Electron Microscopy Study of Nanostructure and Metastable Phase Evolution in Pulsed-Laser-Ablation–Deposited Ti–Si Thin Film

Published online by Cambridge University Press:  03 March 2011

S. Bysakh
Affiliation:
Nanomaterials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305 0003, Japan; and Department of Metallurgy, Indian Institute of Science, Bangalore 560012, India
K. Mitsuishi
Affiliation:
Nanomaterials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305 0003, Japan
M. Song
Affiliation:
Nanomaterials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305 0003, Japan
K. Furuya
Affiliation:
Nanomaterials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305 0003, Japan
K. Chattopadhyay
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560012, India
Get access

Abstract

Thin films with a nominal composition close to Ti62.5Si37.5 were deposited on NaCl substrate at room temperature by pulsed laser ablation to study the evolution of the intermetallic compound Ti5Si3 using a combination of high-resolution and in situ transmission electron microscopy. The as-deposited amorphous films contain Ti-rich clusters, which influence the phase evolution and the decomposition behavior of the amorphous film. These clusters influence the nucleation of a metastable fcc Ti solid solution (ao = 0.433 nm) with composition richer in Ti than Ti62.5Si37.5 as the first phase to crystallize at 773 K. The Ti5Si3 nanocrystals form later, and even at 1073 K they coexist with fine fcc Ti-rich nanocrystals. Subsequent Ar+ ion-milling of the crystallized film results in a loss of silicon. The composition change leads to the dissolution of the Ti5Si3 nanocrystals and evolution of a new metastable Ti-rich fcc phase (ao= 0.408 nm).

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Krebs, H.U., Fahler, S. and Bremert, O.: Appl. Surf. Sci. 86, 86 (1995).CrossRefGoogle Scholar
2Dauscher, A., Thomy, A. and Scherrer, H.: Thin Solid Films. 280, 61 (1996).CrossRefGoogle Scholar
3Bysakh, S., Das, P.K. and Chattopadhyay, K.: Philos. Mag. A. 82, 1235 (2002).Google Scholar
4Naka, M., Matsui, T., Maeda, M. and Mori, H.: Mater. Trans. JIM. 36, 797 (1995).CrossRefGoogle Scholar
5Bysakh, S., Das, P.K. and Chattopadhyay, K.: J. Mater. Res. 18, 284 (2003).CrossRefGoogle Scholar
6Bysakh, S., Das, P.K. and Chattopadhyay, K.: Scr. Mater. 44, 1847 (2001).CrossRefGoogle Scholar
7Miller, M.K., Shen, T.D. and Schwarz, R.K.: J. Non-Cryst. Solids. 317, 10 (2003).CrossRefGoogle Scholar
8Miller, M.K., Shen, T.D. and Schwarz, R.K.: Intermetallics. 10, 1047 (2002).CrossRefGoogle Scholar
9Matsubara, E., Harada, K., Wasada, Y., Chen, H.S. and Inoue, A.: J. Mater. Sci. 23, 753 (1988).CrossRefGoogle Scholar
10Oehring, M. and Bormann, R.: Mater. Sci. Eng. A. 134, 1330 (1991).CrossRefGoogle Scholar
11Singh, R.K. and Narayan, J.: Phys. Rev. B. 41, 8843 (1990).CrossRefGoogle Scholar
12Teghil, R., D’Alessio, L., Santagata, A., Zaccagnino, M. and Ferro, D.: Appl. Surf. Sci. 186, 335 (2002).CrossRefGoogle Scholar
13Zhigilei, L.V.: Appl. Phys. A. 76, 339 (2003).CrossRefGoogle Scholar
14Zhang, X., Li, G.L., Xing, X.P., Zhao, X., Tang, Z.C. and Gao, Z.: Rapid Commun. Mass Spectrom. 15, 2399 (2001).CrossRefGoogle Scholar
15Santagata, A., Marotta, V., Alessio, L.D., Tehgil, R., Ferro, D. and De Maria, G.: Appl. Surf. Sci. 109/110, 376 (1997).CrossRefGoogle Scholar