Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T01:03:05.006Z Has data issue: false hasContentIssue false

A transmission electron microscopy investigation of SiC films grown on SiC substrates by solid-source molecular beam epitaxy

Published online by Cambridge University Press:  31 January 2011

U. Kaiser
Affiliation:
Institut f¨r Festkdörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
I. Khodos
Affiliation:
Institute of Microelectronics Technology and High Purity Materials RAS, 142432 Chernogolovka, Germany
P. D. Brown
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, united kingdom
A. Chuvilin
Affiliation:
Institute of Catalysis, Novosibirsk 90, 630090Germany
M. Albrecht
Affiliation:
Institut für Werkstoffwissenschaften, Universität Erlangen, Cauerstrasse 6, D-91058 Erlangen, Germany
C. J. Humphreys
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, united kingdom
A. Fissel
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
W. Richter
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
Get access

Abstract

The relationship between the defect microstructure of SiC films grown by solid-source molecular-beam epitaxy on 4H and 6H–SiC substrates and their growth conditions, for substrate temperatures ranging between 950 and 1300 °C, has been investigated by a combination of transmission electron microscopy and atomic force microscopy. The results demonstrate that the formation of defective cubic films is generally found to occur at temperatures below 1000 °C. At temperatures above 1000 °C our investigations prove that simultaneous supply of C and Si in the step-flow growth mode on vicinal 4H and 6H substrate surfaces results in defect-free hexagonal SiC layers, and defect-free cubic SiC can be grown by the alternating deposition technique. The controlled overgrowth of hexagonal on top of cubic layers is demonstrated for thin layer thicknesses.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davis, R.F., Kelner, G., Shur, M., Palmour, J.W., and Edmond, J.A., Proc. IEEE 79, 677 (1992).CrossRefGoogle Scholar
2.Baumhauer, H., Z. Krist. 50, 33 (1912).Google Scholar
3.Verma, A.R. and Krisha, P., Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).Google Scholar
4.Pirouz, P. and Young, J.W., Ultramicroscopy 51, 189 (1993).CrossRefGoogle Scholar
5.Wada, L., Negami, T., and Nishitami, M., J. Mater. Res. 9, 658 (1994).CrossRefGoogle Scholar
6.Yang, J.W. and Pirouz, P., J. Mater. Res. 6, 2902 (1993).CrossRefGoogle Scholar
7.Tanaka, M., Acta Crystallogr. A50, 261 (1994).CrossRefGoogle Scholar
8.Wada, L., Wada, H., and Allard, L.F., J. Mater. Res. 7, 148 (1992).Google Scholar
9.Chien, F.R., Nutt, S.R., Yoo, W.S., Kimoto, T., and Matsunami, H., J. Mater. Res. 9, 940 (1994).CrossRefGoogle Scholar
10.Bow, J.S., Carpenter, R.W., and Kim, M.J., J. Microsc. Soc. Am. 2, 63 (1996).Google Scholar
11.Davis, R.F., J. Cryst. Growth, 137, 161 (1994).CrossRefGoogle Scholar
12.Matsunami, H., Phys. B, 185, 65 (1993).CrossRefGoogle Scholar
13.Konstantinov, A.O., Hallin, C., Pecz, B., Kordina, O., and Janzen, E., J. Cryst. Growth, 178, 495 (1997).CrossRefGoogle Scholar
14.Heine, V., Cheng, C., and Needs, R.J., J. Am. Ceram. Soc. 74, 2630 (1991).CrossRefGoogle Scholar
15.Heydemann, V.D., Schultze, N., Barrett, D.L., and Pensl, G., Appl. Phys. Lett. 69, 3728 (1996).CrossRefGoogle Scholar
16.Smith, D.J., Jepps, N.W., and Page, T.F., J. Microsc. 114, 1 (1978).CrossRefGoogle Scholar
17.Kaiser, U., Newcomb, S.B., Stobbs, M.W., Fissel, A., and Richter, W., J. Mater. Res. 13, 3571 (1998).CrossRefGoogle Scholar
18.Fissel, A., Kaiser, U., Pfennighaus, K., Schröter, B., and Richter, W., Appl. Phys. Lett. 68, 1204 (1996).CrossRefGoogle Scholar
19.Fissel, A., Schröter, B., and Richter, W., Festkörperprobleme (in press).Google Scholar
20.Kaneda, S., Sakamoto, Y., Hirara, T., and Tanaka, T., J. Cryst. Growth 81, 536 (1987).CrossRefGoogle Scholar
21.Yoshinobu, T., Mitsu, H., Izumikawa, I., Fuyuki, T., and Matsunami, H., Appl. Phys. Lett. 60, 824 (1990).CrossRefGoogle Scholar
22.Roland, L.B., Kern, R.S., Tanaka, S., and Davis, R.S., J. Mater. Res. 8, 2753 (1993).CrossRefGoogle Scholar
23.Tanaka, S., Scott, R.S., and Davis, R.F., Appl. Phys. Lett. 65, 2851 (1994).CrossRefGoogle Scholar
24.Kern, R.S., Järendahl, K., Tanaka, S., and Davis, R.F., Phys. State Solid B 202, 379 (1997).3.0.CO;2-2>CrossRefGoogle Scholar
25.Ducke, E., Kriegel, R., Fissel, A., Kaiser, U., Schröter, B., Müller, P., and Richter, W., Inst. Phys. Conf. Ser. 142, 609 (1996).Google Scholar
26.Fissel, A., Kaiser, U., Ducke, E., Schröter, B., and Richter, W., J. Cryst. Growth 154, 72 (1995).CrossRefGoogle Scholar
27.Kaiser, U., Chuvillin, A., and Richter, W., Ultramicroscopy 76, 2137 (1999).CrossRefGoogle Scholar
28.Kaiser, U., Brown, P.D., Chuvilin, A., Khodos, I., Fissel, A., Richter, W., and Humphreys, C.J., Mater. Sci. Forum 264–268, 259 (1998).CrossRefGoogle Scholar
29.Chourou, K., Anikin, M., Lauer, V., Guillot, G., Bluet, J. M., Camassel, J., Chaix, O., and Madar, R., Mater. Sci. Forum 17, 264 (1998).Google Scholar
30.Tairov, Y.M. and Tsvetkov, V.F., Prog. Cryst. Growth Character. 7, 111 (1983).CrossRefGoogle Scholar
31.Ming, N. and Sunagawa, J., J. Cryst. Growth 87, 13 (1988).CrossRefGoogle Scholar