Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T19:33:15.880Z Has data issue: false hasContentIssue false

Transmission electron microscopy observation of the interfacial reaction between a metal-organic chemical vapor deposition BaTiO3 thin film and a (100) MgO substrate

Published online by Cambridge University Press:  03 March 2011

Cheol Seong Hwang
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-0001
Mark D. Vaudin
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-0001
Gregory T. Stauf
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Dr., Danbury, Connecticut 06810
Get access

Abstract

Cross-sectional and plan-view transmission electron microscopy were used to characterize a BaTiO3 thin film deposited on a (100) MgO single-crystal substrate at 1000 °C. The major observations were as follows: interdiffusion between the film and substrate; a large number of antiphase boundaries in the BaTiO3; a two-phase microstructure in the film composed of perovskite BaTiO3 and a second nonperovskite phase, Ba2MgTi5O13 (2:1:5); and a well-defined orientation relationship between the 2 : 1 : 5 and BaTiO3 phases. We propose a mechanism for the formation of the 2 : 1 : 5 phase based on the similarities between the crystal structure of this phase and the structure of (210) antiphase boundaries in BaTiO3.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jaffe, B., Cook, W. R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971), p. 271.Google Scholar
2Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977), p. 559.Google Scholar
3Bondurant, D. and Gnadinger, F., IEEE Spectrum 26, 30 (1989).Google Scholar
4Wu, A. Y., Wang, F., Juang, C-B., and Bustamante, C., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 261266.Google Scholar
5Kwak, B.S., Zhang, K., Boyd, E.P., and Erbil, A., J. Appl. Phys. 69 (2), 767 (1991).Google Scholar
6Wills, L.A., Wessles, B.W., Schultz, D.L., and Marks, T.J., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Turtle, B.A. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), pp. 217222.Google Scholar
7Buskirk, P. C. Van, Gardiner, R., Kirlin, P. S., and Nutt, S., J. Mater. Res. 7, 542545 (1992).Google Scholar
8Buskirk, P. C. Van, Stauf, G. T., Gardiner, R., Kirlin, P. S., Bihari, B., Kumar, J., and Gallatin, G., in Ferroelectric Thin Films III, edited by Tuttle, B. A., Myers, E. R., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), pp. 119124.Google Scholar
9Roth, R.S., Rawn, C.J., Lindsay, C.G., and Wong-Ng, W., J. Solid State Chem. 104, 99 (1993).Google Scholar
10Stauf, G. T. (private communication).Google Scholar
11Kroger, F. A. and Vink, H. J., in Solid State Physics, edited by Seitz, F. and Tumbull, D. (Academic Press, New York, 1956), Vol. 3, p. 307.Google Scholar
12Prisedsky, V.V., Pan'ko, G. F., and Klimov, V.V., Ferroelectrics 64, 257 (1985).Google Scholar
13Buessem, W.R. and Kahn, M., J. Am. Ceram. Soc. 54, 458461 (1971).Google Scholar
14Harding, B.C., Philos. Mag. 16, 1039 (1967).CrossRefGoogle Scholar