Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T01:03:08.630Z Has data issue: false hasContentIssue false

Transmission Electron Miscroscopy Observation of the Decomposition of YBa2Cu4O8 into YBa2Cu3O7-δ and CuO

Published online by Cambridge University Press:  31 January 2011

M. Reder
Affiliation:
Institut für Metallphysik, Universitäat Göttingen, Hospitalstraβ 3/7, 37073 Göttingen, Germany
J. Krelaus
Affiliation:
Institut für Metallphysik, Universitäat Göttingen, Hospitalstraβ 3/7, 37073 Göttingen, Germany
D. Müller
Affiliation:
Institut für Metallphysik, Universitäat Göttingen, Hospitalstraβ 3/7, 37073 Göttingen, Germany
K. Heinemann
Affiliation:
Institut für Metallphysik, Universitäat Göttingen, Hospitalstraβ 3/7, 37073 Göttingen, Germany
H. C. Freyhardt
Affiliation:
Institut für Metallphysik, Universitäat Göttingen, Hospitalstraβ 3/7, 37073 Göttingen, Germany
Get access

Abstract

The decomposition of Yba2Cu4O8 (Y-124) into Yba2Cu3O7-δ (Y-123) and CuO at high temperatures has been expected to create Y-123 with finely dispersed CuO precipitates suitable for flux pinning. In fact, samples of thermally decomposed Y-124 exhibit a critical current density, Jc, which is enhanced with respect to the starting material as well as to pure Y-123. Transmission electron microscopy (TEM) studies of furnace annealed Y-124 were not suitable to clarify the reason for this Jc enhancement. Nevertheless, the formation and growth of CuO precipitates have been observed by in situ decomposition of the Y-124 starting material due to electron beam heating within the TEM.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jin, S., Tiefel, T. H., Nakahara, S., Graebner, J. E., O'Bryan, H. M., Fastnacht, R. A., and Kammlott, G. W., Appl. Phys. Lett. 56, 1287 (1990).CrossRefGoogle Scholar
2.Huang, Z. J., Xue, Y. Y., Kulik, J., Sun, Y. Y., and Hor, P. H., Physica C 174, 253 (1991).CrossRefGoogle Scholar
3.Kulik, J., J. Appl. Phys. 70, 4398 (1991).CrossRefGoogle Scholar
4.Srivastava, A. K., Rao, T. V. Chandrashekhar, and Srivastava, O. N., Supercond. Sci. Technol. 7, 551 (1994).CrossRefGoogle Scholar
5.Krelaus, J., Ullmann, B., Heinemann, K., and Freyhardt, H. C., in Applied Superconductivity (vol. 1), edited by Freyhardt, H. C. (DGM Informationsgesellschaft, Oberursel, 1993), p. 783.Google Scholar
6.Krelaus, J., Heinemann, K., Ullmann, B., and Freyhardt, H. C., Physica C 251, 366 (1995).CrossRefGoogle Scholar
7.Tallon, J. L., Pooke, D. M., Buckeley, R. G., Presland, M. R., Flower, N. E., Gibson, S., and Gilbert, P. W., Appl. Phys. Lett. 59, 1239 (1991).CrossRefGoogle Scholar
8.Bordet, P., Chaillout, C., Chenavas, J., Hodeau, J. L., Marezio, M., Karpinski, J., and Kaldis, E., Nature 334, 596 (1988).CrossRefGoogle Scholar
9.Krekels, T., van Tendeloo, G., Amelinckx, S., deLeeuw, D. M., and De Kraan, M., Physica C 169, 457 (1990).CrossRefGoogle Scholar
10.Miyatake, T., Yamaguchi, K., Wada, T., Suzuki, N., Willis, J. O., Yamauchi, H., Koshizuka, N., and Tanaka, S., J. Appl. Phys. 69, 384 (1991).CrossRefGoogle Scholar
11.Morris, D. E., Markelz, A. G., Fayn, B., and Nickel, J. H., Physica C 168, 153 (1990).CrossRefGoogle Scholar
12.Hong, B. S. and Mason, T. O., J. Mater. Res. 6, 2054 (1991).CrossRefGoogle Scholar
13.van Tendeloo, G. and Amelinckx, S., Phys. Status Solidi 103, K1 (1989).CrossRefGoogle Scholar
14.Eddington, J. W., Practical Electron Microscopy in Materials Science (MacMillan, London and Basingstoke, 1976).Google Scholar
15.Zhu, Y., Suenaga, M., and Xu, Y., J. Mater. Res. 5, 1380 (1990).CrossRefGoogle Scholar
16.Jou, C. J. and Washburn, J., J. Mater. Res. 4, 795 (1989).CrossRefGoogle Scholar
17.van Tendeloo, G. and Amelinckx, S., J. Electron Microsc. Technol. 8, 285 (1988).CrossRefGoogle Scholar
18.Jorgensen, J. D., Shaked, H., Hinks, D. G., Dabrowski, B., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Kwok, W. K., Nunez, L. H., and Claus, H., Physica C 153–155, 578 (1988).CrossRefGoogle Scholar
19.Bukowski, Z., Horn, R., Rogacki, K., Flatow, I., Sulkowski, C., Wolcyrz, M., and Klamut, J., J. Less-Com. Metals 144, 153 (1988).CrossRefGoogle Scholar
20.Gupta, D., Shinde, S. L., and Laibowitz, R. B., in High temperature superconducting compounds II, edited by Whang, S. H., Gupta, D., and Laibowitz, R. (The Minerals, Metals & Materials Society, 1990), p. 377.Google Scholar
21.Ramesh, R., Jin, S., Nakahara, S., and Tiefel, T. H., Appl. Phys. Lett. 57, 1458 (1990).CrossRefGoogle Scholar
22.Ramesh, R., Jin, S., and Marsh, P., Nature 346, 420 (1990).CrossRefGoogle Scholar
23.Routbort, J. L., Rothman, S. J., and Mundy, J. N., Phys. Rev. B 48, 7505 (1993).CrossRefGoogle Scholar
24.Rothman, S. J. and Routbort, J. L., Phys. Rev. B 40, 8852 (1988).CrossRefGoogle Scholar
25.Russell, K. C., Prog. Mater. Sci. 28, 229 (1984).CrossRefGoogle Scholar
26.Mitchell, T. E., Roy, T., Schwarz, R. B., Smith, J. F., and Wohlleben, D., J. Electron Microsc. Technol. 8, 317 (1988).CrossRefGoogle Scholar
27.Basu, S. N., Mitchell, T. E., and Nastasi, M., J. Appl. Phys. 69, 3167 (1990).CrossRefGoogle Scholar