Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T16:09:12.490Z Has data issue: false hasContentIssue false

Transparent-conducting, gas-sensing nanostructures (nanotubes, nanowires, and thin films) of titanium oxide synthesized at near-ambient conditions

Published online by Cambridge University Press:  03 March 2011

Jing-Jong Shyue
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Rebecca E. Cochran
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Nitin P. Padture*
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
*
b) Address all correspondence to this author. e-mail: padture.1@osu.edu This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs. org/jmr_policy
Get access

Abstract

A template-based, electroless wet-chemical method for synthesis of nanotubes and nanowires of nanocrystalline anatase titanium oxide (titania) at 45 °C is reported. Single-nanowire electrical property measurements reveal low dc resistivities (7–21 × 10−4 Ω cm) in these titania nanowires. In the presence of 1000 parts per million of CO gas at 100 °C, the resistivity is found to increase reversibly, indicating low-temperature gas-sensing capability in these titania nanowires. Thin films of nanocrystalline anatase titania, deposited using a similar wet-chemical method, also have low room-temperature dc resistivities (6–8 × 10−3 Ω cm), and they are transparent to visible light. Nanostructure-properties relations, together with possible electrical conduction, optical absorption, and gas-sensing mechanisms, are discussed. The ability to fashion transparent-conducting and gas-sensing nanocrystalline anatase titania into nanotubes/nanowires and thin films at near-ambient conditions could open a wider field of applications for titania, including nanoelectronics, chemical sensing, solar cells, large-area windows and displays, invisible security circuits, and incorporation of biomolecules and temperature-sensitive moieties.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fujishima, A., Hashimoto, K., Watanabe, T.: TiO2 Photocatalysis: Fundamentals and Applications (BKC Inc., Tokyo, Japan, 1999).Google Scholar
2.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).CrossRefGoogle ScholarPubMed
3.Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).CrossRefGoogle ScholarPubMed
4.Park, C.O., Akbar, S.A.: Ceramics for chemical sensing. J. Mater. Sci. 38, 4611 (2003).CrossRefGoogle Scholar
5.Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C., Grimes, C.A.: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 (2003).CrossRefGoogle Scholar
6.Hagfeldt, A., Vlachopoulos, N., Grätzel, M.: Fast electrochromic switching with nanocrystalline oxide semiconductor films. J. Electrochem. Soc. 141 L82 (1994).CrossRefGoogle Scholar
7.Topoglidis, E., Cass, A.E.G., O’Regan, B., Durrant, J.R.: Immobilisation and biochemistry of proteins on nanoporous TiO2 and ZnO films. J. Electroanal. Chem. 517, 20 (2001).CrossRefGoogle Scholar
8.Li, J., Hastings, G.W. Oxide ceramics: Inert ceramic materials in medicine and dentistry, in Handbook of Biomaterials Properties, edited by Black, J., Hastings, G.W. (Chapman & Hall, London, 1998), p. 340.CrossRefGoogle Scholar
9.Bendavid, A., Martin, P.J., Jamting, A., Takikawa, H.: Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition. Thin Solid Films 356, 6 (1999).CrossRefGoogle Scholar
10.Buchanan, R.C.: Ceramic Materials for Electronics (Marcel Dekker, New York, 1991).Google Scholar
11.Knauth, P., Tuller, H.L.: Electrical and defect thermodynamic properties of nanocrystalline titanium oxide. J. Appl. Phys. 85, 897 (1999).CrossRefGoogle Scholar
12.Krol, R. v. d., Tuller, H.L.: Electroceramics: The role of interfaces. Solid State Ionics 150, 167 (2002).CrossRefGoogle Scholar
13.Kurtz, S.R., Gordon, R.G.: Chemical vapor deposition of doped TiO2 thin films. Thin Solid Films 147, 167 (1987).CrossRefGoogle Scholar
14.Wang, Z.L.: Nanowires and Nanobelts: Materials, Properties and Devices (Kluwer Academic Publishers, New York, 2003).Google Scholar
15.Lieber, C.M.: Nanoscale science and technology: Building big future from small things. MRS Bull. 28, 486 (2003).CrossRefGoogle Scholar
16.Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
17.Kolmakov, A., Moskovits, M.: Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Sci. 34, 151 (2004).CrossRefGoogle Scholar
18.Tresback, J.S., Vasiliev, A.L., Padture, N.P.: Engineered metal-oxide-metal heterojunction nanowires. J. Mater. Res. 20, 2613 (2005).CrossRefGoogle Scholar
19.Shyue, J-J., Padture, N.P.: Template-directed, near-ambient synthesis of Au-TiO2-Au heterojunction nanowires mediated by self-assembled monolayers (SAMs). Mater. Lett. (2006, in press) doi: 10.1016/j.matlet.2006.04.100.Google Scholar
20.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).CrossRefGoogle Scholar
21.Yuan, Z.Y., Su, B.L.: Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf., A 241, 173 (2004).CrossRefGoogle Scholar
22.Imai, H., Takei, Y., Shimizu, K., Matsuda, M., Hirashima, H.: Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9, 2971 (1999).CrossRefGoogle Scholar
23.Hulteen, J.C., Martin, C.R.: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).CrossRefGoogle Scholar
24.Michailowski, A., AlMawlawi, D., Cheng, G., Moskovits, M.: Highly regular anatase nanotuble arrays fabricated in porous anodic template. Chem. Phys. Lett. 349, 1 (2001).CrossRefGoogle Scholar
25.Miao, Z., Xu, D.S., Ouyang, J.H., Guo, G.L., Zhao, X.S., Tang, Y.Q.: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2, 717 (2002).CrossRefGoogle Scholar
26.Limmer, S.L., Cao, G.Z.: Sol-gel electrophoretic deposition for the growth of oxide nanorods. Adv. Mater. 15, 427 (2003).CrossRefGoogle Scholar
27.Zhang, X.Y., Yao, B.D., Zhao, L.X., Liang, C.H., Zhang, L.D., Mao, Y.Q.: Electrochemical fabrication of single-crystalline anatase TiO2 nanowire arrays. J. Electrochem. Soc. 148 G398 (2001).CrossRefGoogle Scholar
28.Lei, Y., Zhang, L.D., Fan, J.C.: Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett. 338, 231 (2001).CrossRefGoogle Scholar
29.Liu, S., Huang, K.: Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Sol. Energy Mater. 85, 125 (2005).Google Scholar
30.Pradhan, S.K., Reucroft, P.J., Yang, F.Q., Dozier, A.: Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83 (2003).CrossRefGoogle Scholar
31.Xiang, B., Zhang, Y., Wang, Z., Luo, X.H., Zhu, Y.W., Zhang, H.Z., Yu, D.P.: Field-emission properties of TiO2 nanowire arrays. J. Appl. Phys. D38, 1152 (2005).Google Scholar
32.Lin, H., Kozuka, H., Yoko, T.: Electrical properties of transparent doped oxide films. J. Sol-Gel Sci. Technol. 19, 529 (2000).CrossRefGoogle Scholar
33.Furubayashi, Y., Hitosugi, T., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., Shimada, T., Hasegawa, T.: A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 252101 (2005).CrossRefGoogle Scholar
34.Hitosugi, T., Furubayashi, Y., Ueda, A., Itabashi, K., Inaba, K., Hirose, Y., Kinoda, G., Yamamoto, Y., Shimada, T., Hasegawa, T.: Ta-doped anatase TiO2 epitaxial film as transparent conducting oxide. Jpn. J. Appl. Phys. 44 L1063 (2005).CrossRefGoogle Scholar
35.Gordon, R.G.: Criteria for choosing transparent conductors. MRS Bull. 25, 52 (2000).CrossRefGoogle Scholar
36.Ellmer, K.: Resistivity of polycrystalline zinc oxide films: Current status and physical limits. J. Phys. D: Appl. Phys. 34, 3097 (2001).CrossRefGoogle Scholar
37.Granqvist, C.G., Hultaker, A.: Transparent and conducting ITO films: New developments and applications. Thin Solid Films 411, 1 (2002).CrossRefGoogle Scholar
38.Masuda, Y., Sugiyama, T., Seo, W.S., Koumoto, K.: Deposition mechanism of anatase TiO2 on self-assembled monolayers from an aqueous solution. Chem. Mater. 15, 2469 (2003).CrossRefGoogle Scholar
39.Ishimaru, A.: Wave Propagation and Scattering in Random Media (John Wiley & Sons, Inc., New York, 1999).CrossRefGoogle Scholar
40.Gopal, V., Radmilovic, V.R., Daraio, C., Jin, S., Yang, P.D., Stach, E.A.: Rapid prototyping of site-specific nanocontacts by electron and ion beam assisted direct-write nanolithography. Nano Lett. 4, 2059 (2004).CrossRefGoogle Scholar
41.Reed, J.S.: Principles of Ceramics Processing, 2nd ed. (John Wiley & Sons, New York, 1995).Google Scholar
42.Deki, S., Aoi, Y., Hiroi, O., Kajinami, A.: Titanium (IV) oxide thin films prepared from aqueous solution. Chem. Lett. (Jpn.) 6, 433 (1996).CrossRefGoogle Scholar
43.Kishimoto, H., Takahama, K., Hashimoto, N., Aoi, Y., Deki, S.: Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD). J. Mater. Chem. 8, 2019 (1998).CrossRefGoogle Scholar
44.Comini, E., Faglia, G., Sberveglieria, G., Pan, Z., Wang, Z.L.: Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869 (2002).CrossRefGoogle Scholar
45.Wan, Q., Qh, Q.H.L., Chen, Y.J., Wang, T.H., He, X.L., Li, J.P., Lin, C.L.: Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654 (2004).CrossRefGoogle Scholar
46.Kolmakov, A., Zhang, Y., Cheng, G., Moskovits, M.: Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997 (2003).CrossRefGoogle Scholar
47.Li, C., Zhang, D., Liu, X., Han, S., Tang, T., Han, J., Zhou, C.: In2O3 nanowires as chemical sensors. Appl. Phys. Lett. 82, 1613 (2003).CrossRefGoogle Scholar
48.Yu, C., Hao, Q., Saha, S., Shi, L., Kong, X.K., Wang, Z.L.: Integration of metal oxide nanobelts with microsystems for nerve detection. Appl. Phys. Lett. 86, 63101 (2005).CrossRefGoogle Scholar
49.Fan, Z.Y., Lu, J.G.: Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 86, 123510 (2005).CrossRefGoogle Scholar
50.Varghese, O.K., Mor, G.K., Grimes, C.A., Paulose, M., Mukherjee, N.: A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol. 4, 733 (2004).CrossRefGoogle ScholarPubMed
51.Jobin, M., Taborelli, M., Descouts, P.: Structural characterization of oxidized titanium surfaces. J. Appl. Phys. 77, 5149 (1995).CrossRefGoogle Scholar
52.Viornery, C., Chevolot, Y., Leonard, D., Aronsson, B.O., Pechy, P., Mathieu, H.J., Descouts, P., Grätzel, M.: Surface modification of titanium with phosphonic acid to improve bone bonding: Characterization by XPS and ToF-SIMS. Langmuir 18, 2582 (2002).CrossRefGoogle Scholar
53.Cai, K., Muller, M., Bosset, J., Rechtenbach, A., Jandt, K.D.: Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate. Appl. Surf. Sci. 250, 252 (2005).CrossRefGoogle Scholar
54.Razgon, A., Sukenik, C.N.: Ceramic coatings for fiber matrix composites: Titania thin film on bismaleimide-glass fiber composites. J. Mater. Res. 20, 2544 (2005).CrossRefGoogle Scholar
55.Niesen, T.P., DeGuire, M.R.: Review: Deposition of ceramic thin films at low temperatures from aqueous solutions. J. Electroceram. 6, 169 (2001).CrossRefGoogle Scholar
56.Singh, J., Shimakawa, K.: Advances in Amorphous Semiconductors (CRC Press, Boca Raton, FL, 2003).Google Scholar