Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T01:00:15.016Z Has data issue: false hasContentIssue false

Twinning domain in 67Pb(Mg1/3Nb2/3)O3–33PbTiO3 ferroelectric complex perovskite crystal grown by the Bridgman method

Published online by Cambridge University Press:  31 January 2011

Donglin Li
Affiliation:
Laboratory of Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
Pingchu Wang*
Affiliation:
Laboratory of Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
Xiaoming Pan
Affiliation:
Laboratory of Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
Haosu Luo
Affiliation:
Laboratory of Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
Zhiwen Yin
Affiliation:
Laboratory of Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
*
a)Address all correspondence to this author. e-mial: pcwangsunm.shcnc.ac.cn
Get access

Abstract

Single crystals of 67Pb(Mg1/3Nb2/3)O3–33PbTiO3 (PMN-PT, PMNT) relaxor-based complex perovskite solid solution grown by Bridgman method have pseudo-cubic symmetry under ambient conditions. Examination by means of polarized light microscopy showed that the microstructure of the crystals was dominated by a large number of coarse twin domains. It was confirmed that the most common composition planes were {110} in addition, {112} planes were also observed. These twins may be associated with the transformation of PMNT complex perovskite from the cubic to tetragonal upon a decrease in temperatures. The morphology of the domain structure may be explained from the theory of martensitic transformation.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.DeMathan, N., Husson, E., Calvarin, G., Gavari, J.R., Hewat, A. W., and Morell, A., J. Phys.: Condens. Matter 3, 8159 (1991).Google Scholar
2.Choi, S.W., Shrout, T.R., Jang, S.J., and Bhalla, A. S., Ferroelectrics 100, 29 (1989).CrossRefGoogle Scholar
3.Choi, S.W., Jung, J.M., and Bhalla, A.S., Ferroelectrics 1189, 27 (1996).Google Scholar
4.Colla, E.V., Yushin, N.K., and Viehland, D., J. Appl. Phys. 83, 3298 (1998).CrossRefGoogle Scholar
5.Wang, P-C., Luo, H-S., Li, D-L., Shen, W., Zhang, S., and Yin, Z-W., Ferroelectrics 234, 273 (1999).CrossRefGoogle Scholar
6.Husson, E., Chub, M., and Morell, A., Mater. Res. Bull. 23, 357 (1988).CrossRefGoogle Scholar
7.Chen, J., Chan, H.M., and Harmer, M.P., J. Am. Ceram. Soc. 72, 593 (1989).CrossRefGoogle Scholar
8.Hilton, A.D., Randall, C.A., Barber, D.J., and Shrout, T.R., Ferroelectrics 93, 379 (1989).CrossRefGoogle Scholar
9.Shrout, T.R., Huebner, W., and Randall, C.A., J. Mater. Sci. 25, 3461 (1990).Google Scholar
10.Boulesteix, C., Varnier, F., Llebaria, A., and Husson, E., J. Solid State Chem. 108, 141 (1994).CrossRefGoogle Scholar
11.Xu, Z., Kim, M-C., Li, J-F., and Viehland, D., Philos. Mag. A74, 395 (1996).CrossRefGoogle Scholar
12.Mulvihill, M.L., Cross, L.E., and Uchino, K., J. Am. Ceram. Soc. 78, 3345 (1995).CrossRefGoogle Scholar
13.Mulvihill, M.L., Cross, L.E., Cao, W., and Uchino, K., J. Am. Ceram. Soc. 80, 1462 (1997).CrossRefGoogle Scholar
14.Fujishiro, K., Vlokh, R., Yamada, Y., Kiat, J-M., Dkhil, B., and Yamashita, Y., Jpn. J. Appl. Phys. 37, 5246 (1998).Google Scholar
15.Wada, S., Park, S-E., Cross, L.E., and Shrout, T.R., Ferroelectrics 221, 147 (1998).Google Scholar
16.Ye, Z-G. and Dong, M., J. Appl. Phys. 87, 2312 (2000).CrossRefGoogle Scholar
17.Wang, P-C., Luo, H-S., Li, D-L., and Yin, Z-W., J. Inorg. Mater. (in Chinese) 16, 56 (2001).Google Scholar
18.Yin, Z-W., Luo, H-S., Wang, P-C., and Xu, G-S., Ferroelectrics 229, 207 (1999).CrossRefGoogle Scholar
19.Buckley, A., Rivera, J.P., and Salje, E.K.H., J. Appl. Phys. 86, 1653 (1999).CrossRefGoogle Scholar
20.Hirotsve, S. and Suzuki, T.J., J. Phys. Soc. Jpn. 44, 1604 (1978).CrossRefGoogle Scholar
21.Yao, G.D., Hou, S.Y., Dudley, M., and Phillips, J.M., J. Mater. Res. 7, 1847 (1992).CrossRefGoogle Scholar
22.Cook, W.R. Jr., J. Am. Ceram. Soc. 39, 17 (1956).CrossRefGoogle Scholar
23.Devries, R.C. and Burke, J.E., J. Am. Ceram. Soc. 40, 200 (1957).CrossRefGoogle Scholar
24.Cao, W. and Randall, C.A., J. Phys. Chem. Solids 57, 1499 (1996).CrossRefGoogle Scholar
25.Chou, C.C., Chen, C.S., and Tseng, T.Y., Mater Chem. Phys. 45,103 (1996).CrossRefGoogle Scholar
26.White, T.J., Segali, R.L., Barry, J.C., and Hutchison, J.L., Acta. Crystallogr. B41, 93 (1985).CrossRefGoogle Scholar
27.Marezio, M., Remeika, J.P., and Dernier, P.D., Acta Crystallog. B26, 300 (1970).CrossRefGoogle Scholar
28.Fousek, J. and Janovec, V., J. Appl. Phys. 40, 135 (1969).CrossRefGoogle Scholar
29.Buchanan, R.C. and Park, T., Materials Crystal Chemistry (Marcel Dekker, New York, 1999), Chap. 4, pp. 313370.Google Scholar
30.Setterand, N., Colla, E.L., Ferroelectric Ceramics (Birkhauser, Berlin, Germany, 1993), pp. 617.CrossRefGoogle Scholar
31.Prouzet, E., Husson, E., De Mather, S.N., and Morell, A., J. Phys.: Condens. Matter 5, 4889 (1993).Google Scholar
32.Bonneau, P., Garnier, P., Husson, E., and Morell, A., Mater. Res. Bull. 24, 201 (1989).CrossRefGoogle Scholar
33.Egami, T., Rosenfeld, H.D., and Hu, R., Ferroelectrics 136, 15 (1992).CrossRefGoogle Scholar
34.Rosenfeld, H.D. and Egami, T., Ferroelectrics 158, 351 (1994).CrossRefGoogle Scholar
35.Rosenfeld, H.D. and Egami, T., Ferroelectrics, 164, 133 (1995).CrossRefGoogle Scholar
36.Roitburd, A.L. and Kurdjumov, G.V., sMater. Sci. Eng. 39, 141 (1979).CrossRefGoogle Scholar
37.Cao, W. and Cross, L.E., Phys. Rew. B 44, 5 (1991).CrossRefGoogle Scholar
38.Huang, X.R., Jiang, S.S., Hu, X.B., and Liu, W.J., J. Phys.: Condens. Matter 9, 4467 (1997).Google Scholar
39.Wechsley, M.S., Lieberman, D.S., and Read, T.A., Trans. AIME 197, 1503 (1953).Google Scholar
40.Hsu, T.Y., Martensitic Transformation and Martensite (in Chinese) (Science Press, Beijing, People’s Republic of China, 1999), pp. 145212.Google Scholar
41.Ishizawa, N., Saiki, A., Yagi, T., Mizutani, N., and Kato, M., J. Am. Ceram. Soc. 67, C18 (1986).Google Scholar
42.Li, D-L., Wang, P-C, Luo, H-S., Pan, X-M., and Yin, Z-W., Chin. J. Mater. Res. (in Chinese) 14, 457 (2000).Google Scholar