Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:50:11.107Z Has data issue: false hasContentIssue false

Two-zone annealing of Tl0.5Pb0.5(Sr0.8Ba0.2)2Ca2Cu3Oy

Published online by Cambridge University Press:  03 March 2011

T.L. Aselage
Affiliation:
Department 1153/MS 0345, Sandia National Laboratories, Albuquerque, New Mexico 87185-0345
E.L. Venturini
Affiliation:
Department 1153/MS 0345, Sandia National Laboratories, Albuquerque, New Mexico 87185-0345
J.A. Voigt
Affiliation:
Department 1153/MS 0345, Sandia National Laboratories, Albuquerque, New Mexico 87185-0345
D.L. Lamppa
Affiliation:
Department 1153/MS 0345, Sandia National Laboratories, Albuquerque, New Mexico 87185-0345
S.B. Van Deusen
Affiliation:
Department 1153/MS 0345, Sandia National Laboratories, Albuquerque, New Mexico 87185-0345
Get access

Abstract

Stable conditions have been identified for two-zone processing of the superconducting thallium cuprate Tl0.5Pb0.5(Sr0.8Ba0.2)2Ca2Cu3Oy. With P(O2) of 0.8 atm, P(Tl2O) of 4.4 × 10−3 atm, and a sample temperature of 920 °C, single-phase Tl0.5Pb0.5(Sr0.8Ba0.2)2Ca2Cu3Oy, is produced with a Tc of 115 K, complete diamagnetic shielding, and Meissner fraction greater than 70%. Although a small amount of melting occurs under these conditions, a comparison of the low-field diamagnetic shielding for these samples with samples of Pb- and Sr-free TlBa2Ca2Cu3Oy and Tl2Ba2Ca2Cu3Oy, suggests that such melting is not necessary to produce the triple-CuO2-layer superconductors.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Subramanian, M. A., Torardi, C. C., Gopalakrishnan, J., Gai, P. L., Calabrese, J. C., Askew, T. R., Flippen, R. B., and Sleight, A. W., Science 242, 249 (1988).CrossRefGoogle Scholar
2Doi, T., Okada, M., Soeta, A., Yuasa, T., Aihara, K., Kamo, T., and Matsuda, S-P., Physica C 183, 67 (1991).CrossRefGoogle Scholar
3Kamo, T., Doi, T., Soeta, A., Yuasa, T., Inoue, N., Aihara, K., and Matsuda, S-P., Appl. Phys. Lett. 59, 3186 (1991).Google Scholar
4Ren, Z. F. and Wang, J. H., Appl. Phys. Lett. 61, 1715 (1992).CrossRefGoogle Scholar
5Glowacki, B. A. and Ashworth, S. P., Physica C 200, 140 (1992).CrossRefGoogle Scholar
6DeLuca, J. A., Karas, P. L., Tkaczyk, J. E., Bednarczyk, P. J., Garbauskas, M. F., Briant, C. L., and Sorensen, D. B., Physica C 205, 21 (1993).CrossRefGoogle Scholar
7Tkaczyk, J. E., DeLuca, J. A., Karas, P. L., Bednarczyk, P. J., Garbauskas, M. F., Arendt, R. H., Lay, K. W., and Moodera, J. S., Appl. Phys. Lett. 61, 610 (1992).CrossRefGoogle Scholar
8Voigt, J. A., Bunker, B. C., Hammetter, W. F., Ginley, D. S., Venturini, E. L., Kwak, J. F., and Lamppa, D. L., in High-Temperature Superconducting Compounds: Processing and Related Properties, edited by Whang, S. H. and DasGupta, A. (The Minerals, Metals and Materials Society, Warrendale, PA, 1991), p. 291.Google Scholar
9Aselage, T. L., Venturini, E. L., and Van Deusen, S. B., J. Appl. Phys. 75, 1023 (1994).CrossRefGoogle Scholar
10Holstein, W. L., J. Phys. Chem. 97, 4224 (1993).CrossRefGoogle Scholar
11Morgan, P. E. D. and Doi, T., preprint submitted to Powder Diffraction.Google Scholar
12Morgan, P. E. D., Doi, T., Housley, R. M., and Porter, J. R., in Advances in Superconductivity V, edited by Bando, Y. and Yamauchi, H. (Springer-Verlag, Berlin, 1993), p. 391; Ratto, J.J., Porter, J. R., Housley, R. M., and Morgan, P. E. D., Jpn. J. Appl. Phys. 29, 244 (1990).CrossRefGoogle Scholar
13Aselage, T. L., Venturini, E. L., Van Deusen, S. B., Headley, T. J., Eatough, M. O., and Voigt, J. A., Physica C 203, 25 (1992).CrossRefGoogle Scholar