Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T06:19:47.910Z Has data issue: false hasContentIssue false

Ultrafine grain effect on pearlitic transformation in hypereutectoid steel

Published online by Cambridge University Press:  08 January 2013

Fu Liang Lian
Affiliation:
School of Materials Science, State Key Laboratory of Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Hong Ji Liu
Affiliation:
School of Materials Science, State Key Laboratory of Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Jun Jie Sun
Affiliation:
School of Materials Science, State Key Laboratory of Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Xue Jiao Sun
Affiliation:
School of Materials Science, State Key Laboratory of Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Sheng Wu Guo
Affiliation:
School of Materials Science, State Key Laboratory of Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Yong Ning Liu*
Affiliation:
School of Materials Science, State Key Laboratory of Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Lin Xiu Du
Affiliation:
State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: ynliu@mail.xjtu.edu.cn
Get access

Abstract

Pearlitic transformation in an ultrafine-grained (UFG) hypereutectoid steel was investigated. The steel was a plain carbon steel containing 1.0 wt% C and very few other elements. The UFG samples were prepared by thermomechanical treatment, and an average grain size of approximately 1 μm was achieved. The pearlitic transformation was conducted by heating the UFG samples at 1023 K for different times and then cooling in air. A new pearlitic transformation phenomenon was observed: traditional lamellar pearlite can be observed only when the grain size increases to a dimension larger than approximately 4 μm, which is a critical value. When grain size is smaller than this value, the pearlitic transformation occurs in the form of divorced eutectoid, and the microstructure is the ferrite matrix with granular cementite. This research indicates that grain size has a great influence on pearlitic transformation by shortening the diffusion distance and increasing the diffusion rate of carbon atoms in the UFG steel.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ivanisenko, Y., MacLaren, I., Sauvage, X., Valiev, R.Z., and Fecht, H.J.: Shear-induced α → γ transformation in nanoscale Fe–C composite. Acta Mater. 54(6), 1659 (2006).CrossRefGoogle Scholar
Kitahara, H., Tsuji, N., and Minamino, Y.: Martensite transformation from ultrafine grained austenite in Fe–28.5 at.% Ni. Mater. Sci. Eng., A. 438440, 233 (2006).CrossRefGoogle Scholar
Waitz, T. and Karnthaler, H.P.: Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix. Acta Mater. 52(19), 5461 (2004).10.1016/j.actamat.2004.08.003CrossRefGoogle Scholar
Wang, Y.B., Zhao, Y.H., Lian, Q., Liao, X.Z., Valiev, R.Z., Ringer, S.P., Zhu, Y.T., and Lavernia, E.J.: Grain size and reversible beta-to-omega phase transformation in a Ti alloy. Scr. Mater. 63(6), 613 (2010).CrossRefGoogle Scholar
Ohsaki, S., Hono, K., Hidaka, H., and Takaki, S.: Characterization of nanocrystalline ferrite produced by mechanical milling of pearlitic steel. Scr. Mater. 52(4), 271 (2005).CrossRefGoogle Scholar
Liu, Y.N., He, T., Peng, G.J., and Lian, F.L.: Pearlitic transformations in an ultrafine-grained hypereutectoid steel. Metall. Mater. Trans. A. 42(8), 2144 (2011).10.1007/s11661-011-0608-0CrossRefGoogle Scholar
Rajasekhara, S. and Ferreira, P.J.: Martensite → austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel. Acta Mater. 59(2), 738 (2011).CrossRefGoogle Scholar
Böhner, A., Niendorf, T., Amberger, D., Höppel, H.W., Göken, M., and Maier, H.J.: Martensitic transformation in ultrafine-grained stainless steel AISI 304L under monotonic and cyclic loading. Metals 2(1), 56 (2012).10.3390/met2010056CrossRefGoogle Scholar
Waitz, T., Kazykhanov, V., and Karnthaler, H.P.: Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52(1), 137 (2004).10.1016/j.actamat.2003.08.036CrossRefGoogle Scholar
Song, R., Ponge, D., Raabe, D., and Kaspar, R.: Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing. Acta Mater. 53(3), 845 (2005).10.1016/j.actamat.2004.10.051CrossRefGoogle Scholar
Song, R., Ponge, D., Raabe, D., Speer, J.G., and Matlock, D.K.: Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater. Sci. Eng., A. 441(1–2), 1 (2006).CrossRefGoogle Scholar
Najafi-Zadeh, A., Jonas, J., and Yue, S.: Grain refinement by dynamic recrystallization during the simulated warm-rolling of interstitial free steels. Metall. Mater. Trans. A. 23(9), 2607 (1992).10.1007/BF02658064CrossRefGoogle Scholar
Murty, S.V.S.N., Torizuka, S., Nagai, K., Kitai, T., and Kogo, Y.: Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel. Scr. Mater. 53(6), 763 (2005).10.1016/j.scriptamat.2005.05.027CrossRefGoogle Scholar
Dong, H. and Sun, X.J.: Deformation induced ferrite transformation in low carbon steels. Curr. Opin. Solid State Mater. Sci. 9(6), 269 (2005).10.1016/j.cossms.2006.02.014CrossRefGoogle Scholar
Bengochea, R., López, B., and Gutierrez, I.: Microstructural evolution during the austenite-to-ferrite transformation from deformed austenite. Metall. Mater. Trans. A. 29(2), 417 (1998).10.1007/s11661-998-0122-1CrossRefGoogle Scholar
Ungár, T., Alexandrov, I., and Zehetbauer, M.: Ultrafine-grained microstructures evolving during severe plastic deformation. JOM. 52(4), 34 (2000).CrossRefGoogle Scholar
Du, L.X., Yao, S.J., Liu, X.H., and Wang, G.D.: Growth behavior of ultrafine austenite grains in microalloyed steel. Acta Metall. Sinica 22(1), 7 (2009).CrossRefGoogle Scholar
Liu, Q.Y., Deng, S.H., Sun, X.J., Dong, H., and Weng, Y.Q.: Effect of dissolved and precipitated niobium in microalloyed steel on deformation induced ferrite transformation (DIFT). J. Iron. Steel Res. Int. 16(4), 67 (2009).10.1016/S1006-706X(09)60063-7CrossRefGoogle Scholar
Ahmad, E., Sarwar, M., Manzoor, T., and Hussain, N.: Ultrafine grain refinement in a low alloy steel. J. Mater. Eng. Perform. 15(3), 345 (2006).CrossRefGoogle Scholar
Aquino, J.M., Della Rovere, C.A., and Kuri, S.E.: Intergranular corrosion susceptibility in supermartensitic stainless steel weldments. Corros. Sci. 51(10), 2316 (2009).CrossRefGoogle Scholar
Jain, S., Budiansky, N.D., Hudson, J.L., and Scully, J.R.: Surface spreading of intergranular corrosion on stainless steels. Corros. Sci. 52(3), 873 (2010).CrossRefGoogle Scholar
Gong, J., Jiang, Y.M., Deng, B., Xu, J.L., Hu, J.P., and Li, J.: Evaluation of intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with an optimized double loop electrochemical potentiokinetic reactivation method. Electrochim. Acta 55(18), 5077 (2010).10.1016/j.electacta.2010.03.086CrossRefGoogle Scholar
Tan, H., Jiang, Y.M., Deng, B., Gao, W.J., and Li, J.: Evaluation of aged Incoloy 800 alloy sensitization to intergranular corrosion by means of double loop electrochemical methods and image analysis. Nucl. Eng. Des. 241(5), 1421 (2011).CrossRefGoogle Scholar
Verhoeven, J. and Gibson, E.: The divorced eutectoid transformation in steel. Metall. Mater. Trans. A. 29(4), 1181 (1998).CrossRefGoogle Scholar
Oyama, T., Sherby, O.D., Wadsworth, J., and Walser, B.: Application of the divorced eutectoid transformation to the development of fine-grained, spheroidized structures in ultrahigh carbon steels. Scr. Metall. Mater. 18(8), 799 (1984).10.1016/0036-9748(84)90397-1CrossRefGoogle Scholar
Syn, C., Lesuer, D., and Sherby, O.: Influence of microstructure on tensile properties of spheroidized ultrahigh-carbon (1.8 Pct C) steel. Metall. Mater. Trans. A. 25(7), 1481 (1994).CrossRefGoogle Scholar
Taleff, E., Syn, C., Lesuer, D., and Sherby, O.: Pearlite in ultrahigh carbon steels: Heat treatments and mechanical properties. Metall. Mater. Trans. A. 27(1), 111 (1996).CrossRefGoogle Scholar
Payson, P.W., Hodapp, W.L., and Leeder, J.: The spheroidizing of steel by isothermal transformation. Trans. Am. Soc. Metals 28, 306 (1940).Google Scholar
Verhoeven, J.: The role of the divorced eutectoid transformation in the spheroidization of 52100 steel. Metall. Mater. Trans. A. 31(10), 2431 (2000).10.1007/s11661-000-0188-xCrossRefGoogle Scholar
Tong, W.P., Tao, N.R., Wang, Z.B., Lu, J., and Lu, K.: Nitriding iron at lower temperatures. Science 299(5607), 686 (2003).CrossRefGoogle ScholarPubMed
Bokstein, B. and Razumovskii, I.: Grain boundary diffusion and segregation in interstitial solid solutions based on bcc transition metals: Carbon in niobium. Interface Sci. 11(1), 41 (2003).10.1023/A:1021526705550CrossRefGoogle Scholar
Christien, F., Le Gall, R., and Saindrenan, G.: Phosphorus grain boundary segregation in steel 17-4PH. Scr. Mater. 48(1), 11 (2003).CrossRefGoogle Scholar
Ostwald, W.: Lehrbuch der Allgemeinen Chemie (Verlag von wilhelm engelmann, Leipzig, 1896).Google Scholar
Liu, Z.C., Ren, H.P., and Wang, H.Y.: Austenite Formation and Pearlite Transformation (Metallurgical Industry Press, Beijing, China, 2010).Google Scholar
Greenwood, G.W.: Mechanism of Phase Transformation in Crystalline Solids (Institute of Metals, London, UK, 1969).Google Scholar