Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T19:06:29.598Z Has data issue: false hasContentIssue false

Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters

Published online by Cambridge University Press:  31 January 2011

J. S. Williams*
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, Australian National University, Canberra, 0200, Australia
Y. Chen
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, Australian National University, Canberra, 0200, Australia
J. Wong-Leung
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, Australian National University, Canberra, 0200, Australia
A. Kerr
Affiliation:
Department of Electronic Materials Engineering, RSPhysSE, Australian National University, Canberra, 0200, Australia
M. V. Swain
Affiliation:
CSIRO Division of Telecommunications and Industrial Physics, Lindfield, 2070, Australia
*
a)Address all correspondence to this author. e-mail: jsw109@rsphy4.anu.edu.au
Get access

Abstract

Details of microindentation of silicon, such as the semiconductor-to-metal transformation, which takes place on loading, have been examined using spherical indenters. Various forms of silicon are studied, including heavily boron-doped wafers and silicon damaged and amorphized by ion implantation as well as material containing dislocations. Results indicate that only silicon, which contains high concentrations of point defects or is amorphous, exhibits mechanical properties that differ significantly from undoped, defect-free crystal. Amorphous silicon exhibits plastic flow under low indentation pressures and does not appear to undergo phase transformation on loading and unloading. Indentation of compound semiconductors is also studied and the load/unload behavior at room temperature is quite different from that of silicon. Both gallium arsenide and indium phosphide, for example, undergo slip-induced plasticity above a critical load.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hu, J. Z. and Spain, I. P., Solid State Commun. 51, 26 (1983).Google Scholar
2.Hu, J. Z., Merkle, L. D., Menoni, C. S., and Spain, I. L., Phys. Rev. B3, 4679 (1986).CrossRefGoogle Scholar
3.Gorgunora, N. A., Borshcherskii, A. S., and Tretiakov, C. N., Physics of III-V Compound; Semiconductors and Semi-metals (Academic Press, San Diego, CA, 1968), Vol. 4, Chap. 1.Google Scholar
4.Gridneva, I. V., Milman, Yu. V., and Trefilov, V. I., Phys. Status Solidi (a) 14, 177 (1972).CrossRefGoogle Scholar
5.Clarke, D.R., Knoll, M. C., Kirchener, P. C., Cook, R. F., and Hockey, B. J., Phys. Rev. Lett. 21, 2156 (1988).CrossRefGoogle Scholar
6.Pharr, G.M., Oliver, W.C., and Clarke, D. R., Scripta Metall. 23, 1949 (1989).CrossRefGoogle Scholar
7.Pharr, G.M., Oliver, W. C., and Clarke, D.R., J. Electron. Mater. 19, 881 (1990).CrossRefGoogle Scholar
8.Page, T.F., Oliver, W.C., and McHargue, C. J., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
9.Suzuki, T. and Ohmura, T., Philos. Mag. A74, 1073 (1996).CrossRefGoogle Scholar
10.Kailer, A., Gogotsi, Y. G., and Nickel, K. G., J. Appl. Phys. 81, 3057 (1997).CrossRefGoogle Scholar
11.Lucazeau, G. and Abello, L., J. Mater. Res. 12, 2262 (1997).CrossRefGoogle Scholar
12.Gogotsi, Y.G., Kailer, A., and Nickel, K. G., Mater. Res. Innova. 1, 3 (1997).CrossRefGoogle Scholar
13.Lawn, B.R. and Wilshaw, T. R., J. Mater. Sci. 10, 1049 (1975).CrossRefGoogle Scholar
14.Weppelmann, E.R., Field, J. S., and Swain, M. V., J. Mater. Res. 8, 830 (1993).CrossRefGoogle Scholar
15.Field, J. S. and Swain, M.V., J. Mater. Res. 8, 259 (1993).CrossRefGoogle Scholar
16.Weppelmann, E.R., Field, J. S., and Swain, M.V., J. Mater. Sci. 30, 245 (1995).CrossRefGoogle Scholar
17.Williams, J. S., Field, J. S., and Swain, M.V., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E. Jr, and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 571.Google Scholar
18.Gilman, J. J., J. Mater. Res. 7, 535 (1992).CrossRefGoogle Scholar
19.Burnett, P.J., in Properties of Silicon, EMIS Data Reviews, Series No. 4 (1988), 2126, INSPEC.Google Scholar
20. See, for example, Williams, J.S., Rep. Prog. Phys. 49, 491 (1986).CrossRefGoogle Scholar
21.Whitehead, A.J. and Page, T. F., in Mechanical Properties and Deformation of Materials Having Ultra-Fine Microstructures, NATO Advanced Study Institute Series (Deventer: Kluwer, 1993), Vol. 233, p. 481.Google Scholar
22.Page, T.F., Riesterand, L., and Hainsworth, L. S., Mater. Res. Soc. Symp. Proc. (in press, 1999).Google Scholar
23.Mann, A.B., Searson, P. C., Pethica, J.B., and Weihs, T. P., in Thin Films—Stresses and Mechanical Properties VII, edited by Cammarata, R. C., Busso, E. P., Nastasi, M., and Oliver, W.C. (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 307.Google Scholar
24.Mann, A.B., Pethica, J. B., Nix, W.D., and Tomiya, S., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S. P., Ross, C. A., Townsend, P. H., Volkert, C. A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 271.Google Scholar
25.Hjort, K., Ericson, F., Schweitz, J-A., Hallin, C., and Janzen, E., Thin Solid Films 250, 157 (1994).CrossRefGoogle Scholar
26.Warren, P.D., Pirouz, P., and Roberts, S.G., Philos. Mag. A50, L23 (1984).Google Scholar