Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T02:15:34.576Z Has data issue: false hasContentIssue false

Uncoupling crystal growth and nucleation in the deposition of diamond from the gas phase

Published online by Cambridge University Press:  31 January 2011

E. Molinari
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, I-00173 Roma, Italy
R. Polini
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, I-00173 Roma, Italy
M.L. Terranova
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, I-00173 Roma, Italy
P. Ascarelli
Affiliation:
Istituto di Metodologie Avanzate Inorganiche, Area della Ricerca del CNR, C.P.10, I-00016 Monterotondo Scalo, Italy
S. Fontana
Affiliation:
Istituto di Metodologie Avanzate Inorganiche, Area della Ricerca del CNR, C.P.10, I-00016 Monterotondo Scalo, Italy
Get access

Abstract

Diamond deposits of well-separated particles have been obtained by the hot filament CVD technique on Si(100) wafers. Particle counting in SEM images and determination of their linear dimensions require a separate study of growth rates and of nucleation densities as a function of time, substrate temperature (500 °C–950 °C), gas phase composition (0.5–2% CH4 in H2), and total pressure (15–76 Torr). It is shown that recent models proposed for the growth process can successfully be applied if proper consideration is given to the high catalytic activity of the growing diamond surface for the heterogeneous recombination of gaseous H-atoms. This fast reaction controls the H-atom concentration at the surface and couples growth rates and nucleation densities via the gas phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
2.Frenklach, M. and Wang, H., Phys. Rev. B 43, 1520 (1991).CrossRefGoogle Scholar
3.Frenklach, M., to be published in Diamond and Diamond-Like Films and Coatings, edited by Angus, J. C., Clausing, R. E., Horton, L. L., and Koidl, P. (Plenum Press, New York).Google Scholar
4.Ascarelli, P., Molinari, E., Polini, R., Sessa, V., Terranova, M. L., Cappelli, E., and Fontana, S., to be published in Diamond and Diamond-Like Films and Coatings, edited by Angus, J. C., Clausing, R. E., Horton, L. L., and Koidl, P. (Plenum Press, New York).Google Scholar
5.Spear, K. E., J. Am. Ceram. Soc. 72, 191 (1989).CrossRefGoogle Scholar
6.Harris, S. J., Appl. Phys. Lett. 56, 2298 (1990).CrossRefGoogle Scholar
7.Harris, S. J. and Robbin Martin, L., J. Mater. Res. 5, 2313 (1990); L. Robbin Martin and M. W. Hill, J. Mater. Sci. Lett. 9, 621 (1990).CrossRefGoogle Scholar
8.Harris, S. J., Weiner, A. M., and Perry, T. A., Appl. Phys. Lett. 53, 1605 (1988).CrossRefGoogle Scholar
9.Harris, S. J. and Weiner, A. M., J. Appl. Phys. 67, 6520 (1990).CrossRefGoogle Scholar
10.Schäfer, L., Klages, C. P., Meier, U., and Kohse-Hoinghaus, K., Appl. Phys. Lett. 58, 571 (1991).CrossRefGoogle Scholar
11.Schäfer, L., Bringmann, U., Klages, C. P., Meier, U., and Kohse-Hoinghaus, K., to be published in Diamond and Diamond-Like Films and Coatings, edited by Angus, J. C., Clausing, R. E., Horton, L. L., and Koidl, P. (Plenum Press, New York).Google Scholar
12.Frank-Kamemetski, D. A., Diffusion and Heat Exchange in Chemical Kinetics (Princeton University Press, Princeton, NJ, 1955).CrossRefGoogle Scholar
13.Mercier, J., Bonnot, A. M., Caignol, E., and Gheeraert, E., to be published in Diamond and Diamond-like Films and Coatings, edited by Angus, J. C., Clausing, R. E., Horton, L. L., and Koidl, P. (Plenum Press, New York).Google Scholar
14.Wood, B. J. and Wise, H., J. Phys. Chem. 65, 1976 (1961).CrossRefGoogle Scholar
15.Melin, G. A. and Madix, R. J., Trans. Farad. Soc. 67, 2711 (1971).CrossRefGoogle Scholar
16.Celii, F. G. and Butler, J. E., Appl. Phys. Lett. 54, 1031 (1989).CrossRefGoogle Scholar
17.Sommer, M. and Smith, F. W., J. Mater. Res. 5, 2433 (1990).CrossRefGoogle Scholar
18.Jansen, F., Chen, I., and Machonkin, M. A., J. Appl. Phys. 66, 5749 (1989).CrossRefGoogle Scholar
19.Fedosayev, D. V., Deryagin, B. V., and Varasavskaja, I. G., Surf. Coat. Technol. 38, 9 (1989).CrossRefGoogle Scholar
20.Deryagin, B. V. and Fedosayev, D. V., Surf. Coat. Technol. 38, 133 (1989).CrossRefGoogle Scholar