Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T16:57:06.129Z Has data issue: false hasContentIssue false

Understanding the Glass-forming Ability of Cu50Zr50 Alloys in Terms of a Metastable Eutectic

Published online by Cambridge University Press:  03 March 2011

W.H. Wang*
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
J.J. Lewandowski
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
A.L. Greer
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
*
a) Address all correspondence to this author. e-mail: whw@aphy.iphy.ac.cn
Get access

Abstract

Interest in finding binary alloys that can form bulk metallic glasses has stimulated recent work on the Cu–Zr system, which is known to show glass formation over a wide composition range. This work focuses on copper mold casting of Cu50Zr50 (at.%), and it is shown that fully amorphous rods up to 2-mm diameter can be obtained. The primary intermetallic phase competing with glass formation on cooling is identified, and the glass-forming ability is interpreted in terms of a metastable eutectic involving this phase. Minor additions of aluminum increase the glass-forming ability: with addition of 4 at.% Al to Cu50Zr50, rods of at least 5-mm diameter can be cast fully amorphous. The improvement of glass-forming ability is related to suppression of the primary intermetallic phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ray, R., Giessen, B.C. and Grant, N.J.: Formation of Cu–Zr metallic glasses. Scripta Metall. 2, 359 (1968).Google Scholar
2Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
3Johnson, W.L.: Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
4Greer, A.L.: Confusion by design. Nature 366, 303 (1993).CrossRefGoogle Scholar
5Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).CrossRefGoogle ScholarPubMed
6Cahn, R.W. and Greer, A.L. Metastable states of alloys, in Physical Metallurgy, revised and enhanced edition, edited by Cahn, R.W. and Haasen, P. (Elsevier Sciences BV, Amsterdam, The Netherlands, 1996), Chap. 19.Google Scholar
7Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
8Egami, T. and Waseda, Y.: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
9Miracle, D.B., Sanders, W.S. and Senkov, O.N.: The influence of efficient atomic packing on the constitution of metallic glasses. Philos. Mag. 83, 2409 (2003).CrossRefGoogle Scholar
10Claire, A.D. Le: Interdiffusion between Cu and Zr. J. Nucl. Mater. 69–70, 70 (1978).Google Scholar
11Boer, F.R., Boom, R., Matterns, W.C.M., Miedema, A.R. and Niessen, A.K.: Cohesion in Metals (North-Holland, Amsterdam, The Netherlands, 1988).Google Scholar
12Hellstern, E. and Schultz, L.: Amorphization of transition metal Zr alloys by mechanical alloying. Appl. Phys. Lett. 48, 124 (1986).CrossRefGoogle Scholar
13Atzmon, M., Verhoeven, J.R., Gibson, E.D. and Johnson, W.L.: Formation and growth of amorphous phases by solid-state reaction in elemental composites prepared by cold working. Appl. Phys. Lett. 45, 1052 (1984).CrossRefGoogle Scholar
14Xu, D., Lohwongwatana, B., Duan, G., Johnson, W.L. and Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series-Cu100–xZrx(x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).CrossRefGoogle Scholar
15Xu, D., Duan, G. and Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).CrossRefGoogle ScholarPubMed
16Inoue, A. and Zhang, W.: Formation, thermal stability and mechanical properties of Cu–Zr and Cu–Hf binary glassy alloy rods. Mater. Trans. 45, 584 (2004).CrossRefGoogle Scholar
17Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K. and Ma, E.: Bulk metallic glass formation in the binary Cu–Zr system. Appl. Phys. Lett. 84, 4029 (2004).CrossRefGoogle Scholar
18Tang, M.B., Zhao, D.Q., Pan, M.X. and Wang, W.H.: Binary Cu–Zr bulk metallic glasses. Chin. Phys. Lett. 21, 901 (2004).Google Scholar
19Inoue, A. and Zhang, W.: Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater. Trans. 43, 2921 (2002).CrossRefGoogle Scholar
20Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).CrossRefGoogle ScholarPubMed
21Perera, D.N.: Compilation of the fragility parameters for several glass-forming metallic alloys. J. Phys. Condens. Matter 11, 3807 (1999).CrossRefGoogle Scholar
22Borrego, J.M., Conde, A., Roth, S. and Eckert, J.: Glass-forming ability and soft magnetic properties of FeCoSiAlGaPCB amorphous alloys. J. Appl. Phys. 92, 2073 (2002).CrossRefGoogle Scholar
23Zhao, Z.F. and Wang, W.H.: A highly glass-forming alloy with very low glass transition temperature. Appl. Phys. Lett. 82, 4699 (2003).CrossRefGoogle Scholar
24Lin, X.H. and Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
25Lu, Z.P., Tan, H., Li, Y. and Ng, S.C.: The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Mater. 42, 667 (2000).CrossRefGoogle Scholar
26Zeng, K.J., Hämäläinen, M. and Lukas, H.L.: Phase diagram of Cu–Zr alloy. J. Phase Equilibria 15, 577 (1994).CrossRefGoogle Scholar
27Révész, Á., Concustell, A., Varga, L.K., Suriñach, S. and Baró, M.D.: Influence of the wheel speed on the thermal behaviour of Cu60Zr20Ti20 alloys. Mater. Sci. Eng. A 375–377, 776 (2004).CrossRefGoogle Scholar
28Weihs, T.P., Barbee, T.W. and Wall, M.A.: Hardness, ductility, and thermal processing of Cu/Zr, and Cu/Cu–Zr nanoscale multilayer foils. Acta Mater. 45, 2307 (1997).CrossRefGoogle Scholar
29Arroyave, R., Eagar, T.W. and Kaufman, L.: Thermodynamic assessment of the Cu–Ti–Zr system. J. Alloys Compd. 351, 158 (2003).CrossRefGoogle Scholar
30Highmore, R.J. and Greer, A.L.: Eutectics and the formation of amorphous alloys. Nature 339, 363 (1989).CrossRefGoogle Scholar
31Bossuyt, S.: Spatial localization of the nucleation rate and formation of inhomogeneous nanocrystalline dispersions in deeply undercooled glass forming liquids. Scripta Mater. 44, 2781 (2001).CrossRefGoogle Scholar
32Bossuyt, S. and Greer, A.L.: Effects of positive feedback on crystallization kinetics and recalescence, in Amorphous and Nanocrystalline Metals, edited by Busch, R., Hufnagel, T.C., Eckert, J., Inoue, A., Johnson, W.L., and Yavari, A.R. (Mater. Res. Soc. Symp. Proc. 806, Warrendale, PA, 2004), p. 15.Google Scholar
33Lu, Z.P. and Liu, C.T.: Role of minor alloying additions in formation of bulk metallic glasses: A Review. J. Mater. Sci. 39, 3965 (2004).CrossRefGoogle Scholar
34Wang, W.H., Bian, Z., Wen, P., Zhang, Y., Pan, M.X. and Zhao, D.Q.: Role of addition in formation and properties of Zr-based bulk metallic glasses. Intermetallics 10, 1249 (2002).CrossRefGoogle Scholar