Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T00:15:06.014Z Has data issue: false hasContentIssue false

The use of thermodynamic models in the prediction of the glass-forming range of binary alloys

Published online by Cambridge University Press:  31 January 2011

R. B. Schwarz
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. Nash
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. Turnbull
Affiliation:
Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Analytical expressions describing the various thermodynamic phases in binary systems can be derived by the CALPHAD approach, whereby the parameters in these expressions are obtained from fits to measured phase equilibrium data. Extrapolations of these models can be used to predict metastable equilibria. Different thermodynamic models proposed for the Ni–Ti and the Cu–Ti systems are used to calculate the T0 curves that are relevant to the prediction of the glass-forming range in rapidly cooled molten alloys. Although all the models give acceptable fits for the equilibrium range for which they were derived, significant differences are found for the metastable regime. The problems that need to be addressed in order to improve the extrapolations into the metastable regime are discussed. Simple thermodynamic considerations predict that the glass-forming range for rapidly quenched alloys exceeds that for amorphous alloys synthesized by isothermal solid-state interdiffusion reactions.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Spaepen, F. and Turnbull, D., in the Proceedings of the 2nd International Conference on Rapidly Quenched Metals, edited by Grant, N. J. and Giessen, B. C. (MIT, Cambridge, MA, 1976), p. 205.Google Scholar
2Woychik, C. G., Lowndes, D. H., and Massalski, T. B., Acta Metall. 33, 1861 (1985).Google Scholar
3The term “glass-forming range” is preferred here to the more commonly used term “glass-forming ability” to describe the composition range in which metallic glasses may be formed.Google Scholar
4Boettinger, W. J., in the Proceedings of the Materials Research Society, edited by BKear, . H., Giessen, B. C., and Cohen, M. (Elsevier, Amsterdam, 1982), Vol. 8, p. 15.Google Scholar
5Massalski, T. B., in the Proceedings of the 4th International Conference on Rapidly Quenched Metals, edited by Masumoto, T. and Suzuki, K. (Japan Institute of Metals, Sendai, Japan, 1981), p. 203.Google Scholar
6Lin, C. J. and Spaepen, F., Appl. Phys. Lett. 41, 716 (1982).CrossRefGoogle Scholar
7Lin, C. J., Spaepen, F., and Turnbull, D., J. Non-Cryst. Solids 61/62, 767 (1984).Google Scholar
8Kaufman, L. and Bernstein, H., Computer Calculations of Phase Diagrams (Academic, New York, 1970).Google Scholar
9Kaufman, L., CALPHAD 1, 7 (1977).Google Scholar
10Kaufman, L. and Nesor, H., CALPHAD 2, 59 (1978).Google Scholar
11Saunders, N., CALPHAD 9, 297 (1985).Google Scholar
12Kaufman, L., CALPHAD 2, 117 (1978).Google Scholar
13Murray, J. L., Bull. Alloy Phase Diagrams 4, 81 (1983).Google Scholar
14Kaufman, L. and Nesor, H., CALPHAD 2, 81 (1978).Google Scholar
15Saunders, N. (private communication, 1985); Work cited in J. Murray, submitted to Bull. Alloy Phase Diagrams.Google Scholar
16Buschow, K. H. J., J. Phys. F 13, 563 (1983).CrossRefGoogle Scholar
17Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).Google Scholar
18Kim, J. J., Moine, P., and Stevenson, D. A., Scr. Metall. 20, 243 (1986).Google Scholar
19Chen, H. S. and Turnbull, D., Acta Metall. 17, 1021 (1969); H. S. Chen, Rep. Prog. Phys. 43, 353 (1980).Google Scholar
20Massalski, T. B., Woychik, C. C., and Murray, J. L., in the Proceedings of the Materials Research Society, edited by Bennett, L. H., Massalski, T. B., and Giessen, B. C. (Elsevier, Amsterdam, 1982), Vol. 19, p. 241.Google Scholar
21Esin, Yu. O., Valishev, M. G., Ermakov, A. F., Gel'd, O. V., and Petrushevskii, M. S., Russ. J. Phys. Chem. 55, 421 (1981).Google Scholar
22German, R. M. and Pierre, G. R. St., Metall. Trans. 3, 2819 (1972).Google Scholar
23Perepezko, J. H. and Paik, J. S., J. Non-Cryst. Solids 61/62, 113 (1984).Google Scholar
24Kui, H. W. and Turnbull, D. (in preparation, 1987).Google Scholar
25Jönsson, B. and Ägren, J., Metall. Trans. A 17, 607 (1986).Google Scholar
26Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
27Buschow, K. H. J., J. Appl. Phys. 56, 304 (1984).Google Scholar