Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T17:04:21.710Z Has data issue: false hasContentIssue false

Using in situ synchrotron x-ray diffraction to study lithium- and sodium-ion batteries: A case study with an unconventional battery electrode (Gd2TiO5)

Published online by Cambridge University Press:  04 November 2014

James C. Pramudita
Affiliation:
School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia
Robert Aughterson
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
Wesley M. Dose
Affiliation:
Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
Scott W. Donne
Affiliation:
Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
Helen E. A. Brand
Affiliation:
Australian Synchrotron, Clayton, Victoria 3168, Australia
Neeraj Sharma*
Affiliation:
School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia
*
a)Address all correspondence to this author. e-mail: neeraj.sharma@unsw.edu.au
Get access

Abstract

Designing materials for application as electrodes in sodium-ion batteries may require the use of unconventional materials to realize acceptable reversible sodium insertion/extraction capabilities. To design new materials simple electrochemical methods need to be coupled with other techniques such as in situ x-ray diffraction (XRD) to correlate the influence of electrochemical performance on a parameter that can be modified, e.g., the crystal structure of the material. Here we use in situ synchrotron XRD data on Gd2TiO5-containing cells to show the minor changes in reflection positions during discharge/charge that illustrates minimal volume expansion and contraction due to insertion/extraction reactions. These small changes correlate to the Gd2TiO5 anode material in both lithium- and sodium-ion batteries showing reversible capacities of ∼45 and ∼23 mA h/g after 20 cycles, respectively. Analysis of sodium location in the crystal structure shows a preference for sodium in the smaller channels along the c axis direction during the first discharge before moving to the larger channels at the charged state. Therefore, in this work, in situ studies highlight minimal structural changes with respect to volume expansion during electrochemical cycling and illustrate where sodium ions locate within the Gd2TiO5 structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tarascon, J-M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).Google Scholar
Goodenough, J.B. and Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).Google Scholar
Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-Gonzalez, J., and Rojo, T.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884 (2012).Google Scholar
Vikstrom, H., Davidsson, S., and Hook, M.: Lithium availability and future production outlooks. Appl. Energy 110, 252 (2013).Google Scholar
Hong, S.Y., Kim, Y., Park, Y., Choi, A., Choi, N-S., and Lee, K.T.: Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 6, 2067 (2013).Google Scholar
Wenzel, S., Hara, T., Janek, J., and Adelhelm, P.: Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342 (2011).Google Scholar
Senguttuvan, P., Rousse, G., Seznec, V., Tarascon, J.M., and Palacín, M.R.: Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109 (2011).Google Scholar
Park, S.I., Gocheva, I., Okada, S., and Yamaki, J.: Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158, A1067 (2011).Google Scholar
Mortazavi, M., Deng, J., Shenoy, V.B., and Medhekar, N.: Elastic softening of alloy negative electrodes for Na-ion batteries. J. Power Sources 225, 207 (2013).Google Scholar
Datta, M.K., Epur, R., Saha, P., Kadakia, K., Park, S.K., and Kumta, P.N.: Tin and graphite based nanocomposites: Potential anode for sodium ion batteries. J. Power Sources 225, 316 (2013).Google Scholar
Pang, W.K., Peterson, V.K., Sharma, N., Shiu, J-J., and Wu, S.H.: Lithium migration in Li4Ti5O12 studied using in situ neutron powder diffraction. Chem. Mater. 26, 2318 (2014).Google Scholar
Pang, W.K., Sharma, N., Peterson, V.K., Shiu, J-J., and Wu, S.H.: In-situ neutron diffraction study of the simultaneous structural evolution of a LiNi0.5Mn1.5O4 cathode and a Li4Ti5O12 anode in a LiNi0.5Mn1.5O||Li4Ti5O12 full cell. J. Power Sources 246, 464 (2014).Google Scholar
Sharma, N., Yu, D., Zhu, Y., Wu, Y., and Peterson, V.K.: Non-equilibrium structural evolution of the lithium-rich Li1+yMn2O4 cathode within a battery. Chem. Mater. 25, 754 (2013).Google Scholar
Serras, P., Palomares, V., Rojo, T., Brand, H.E.A., and Sharma, N.: Structural evolution of high energy density V3+/V4+ mixed valent Na3V2O2x(PO4)2F3-2x (x = 0.8) sodium vanadium fluorophosphate using in-situ synchrotron x-ray powder diffraction. J. Mater. Chem. A 2, 7766 (2014).Google Scholar
Sharma, N., Serras, P., Palomares, V., Brand, H.E.A., Alonso, J., Kubiak, P., Fdez-Gubieda, M.L., and Rojo, J.M.: The sodium distribution and reaction mechanisms of a Na3V2O2(PO4)2F electrode during use in a sodium-ion battery. Chem. Mater. 25, 4917 (2014).Google Scholar
Reimers, J.N. and Dahn, J.R.: Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091 (1992).Google Scholar
Dahn, J.R.: Phase diagram of LixC6. Phys. Rev. B 44, 9170 (1991).Google Scholar
Lu, Z. and Dahn, J.R.: In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J. Electrochem. Soc. 148, A1225 (2001).Google Scholar
Brant, W.R., Schmid, S., Du, G., Gu, Q., and Sharma, N.: A simple electrochemical cell for in-situ fundamental structural analysis using synchrotron x-ray powder diffraction. J. Power Sources 244, 109 (2013).Google Scholar
Guignard, M., Didier, C., Darriet, J., Bordet, P., Elkaim, E., and Delmas, C.: P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 12, 74 (2013).Google Scholar
Didier, C., Guignard, M., Darriet, J., and Delmas, C.: O′3–NaxVO2 system: A superstructure for Na1/2VO2. Inorg. Chem. 51, 11007 (2012).Google Scholar
Berthelot, R., Carlier, D., and Delmas, C.: Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 10, 74 (2011).Google Scholar
Yu, X., Pan, H., Wan, W., Ma, C., Bai, J., Meng, Q., Ehrlich, S.N., Hu, Y-S., and Yang, X.Q.: A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ x-ray diffraction and chemical sodiation. Nano Lett. 13, 4721 (2013).Google Scholar
Vidal-Abarca, C., Ateba Mba, J.M., Masquelier, C., Tirado, J.L., and Lavela, P.: In situ x-ray diffraction study of electrochemical insertion in Mg0.5Ti2(PO4)3: An electrode material for lithium or sodium batteries. J. Electrochem. Soc. 159, A1716 (2012).Google Scholar
Sauvage, F., Laffont, L., Tarascon, J.M., and Baudrin, E.: Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 46, 3289 (2007).Google Scholar
Moreau, P., Guyomard, D., Gaubicher, J., and Boucher, F.: Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater. 22, 4126 (2010).Google Scholar
Ellis, L.D., Hatchard, T.D., and Obrovac, M.N.: Reversible insertion of sodium in tin. J. Electrochem. Soc. 159, A1801 (2012).CrossRefGoogle Scholar
Kim, H.S., Joung, C.Y., Lee, B.H., Kim, S.H., and Sohn, D.S.: Characteristics of GdxMyOz (M = Ti, Zr or Al) as a burnable absorber. J. Nucl. Mater. 372, 340 (2008).Google Scholar
Sun, Y., Zhao, L., Pan, H., Lu, X., Gu, L., Hu, Y-S., Li, H., Armand, M., Ikuhara, Y., Chen, L., and Huang, X.: Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 4, 1870 (2013).Google Scholar
Du, G., Sharma, N., Kimpton, J.A., Jia, D., Peterson, V.K., and Guo, Z.: Br-doped Li4Ti5O12 and composite TiO2 anodes for Li-ion batteries: Synchrotron x-ray and in situ neutron diffraction studies. Adv. Funct. Mater. 21, 3990 (2011).Google Scholar
Laumann, A., Boysen, H., Bremholm, M., Thomas Fehr, K., Hoelzel, M., and Holzapfel, M.: Lithium migration at high temperatures in Li4Ti5O12 studied by neutron diffraction. Chem. Mater. 23, 2753 (2011).Google Scholar
Sudant, G., Baudrin, E., Larcher, D., and Tarascon, J-M.: Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J. Mater. Chem. 15, 1263 (2005).Google Scholar
Stramare, S., Thangadurai, V., and Weppner, W.: Lithium lanthanum titanates: A review. Chem. Mater. 15, 3974 (2003).Google Scholar
Aughterson, R.D., Lumpkin, G.R., de los Reyes, M., Sharma, N., Ling, C.D., Gault, B., Smith, K.L., Avdeev, M., and Cairney, J.M.: Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2-x)TiO5 series. J. Solid State Chem. 213, 182 (2014).Google Scholar
Hayun, S. and Navrotsky, A.: Formation enthalpies and heat capacities of rear earth titanates: RE2TiO5 (RE = La, Nd and Gd). J. Solid State Chem. 187, 70 (2012).Google Scholar
Gummow, R.J., Sharma, N., Feng, R., Han, G., and He, Y.: High performance composite lithium-rich nickel manganese oxide cathodes for lithium-ion batteries. J. Electrochem. Soc. 160, A1856 (2013).Google Scholar
Schmitt, B., Bronnimann, C., Eikenberry, E.F., Gozzo, F., Horrmann, C., Horisberger, R., and Patterson, B.: Mythen detector system. Nucl. Instrum. Methods Phys. Res., Sect. A 501, 267 (2003).Google Scholar
Larson, A.C. and Von Dreele, R.B.: General structure analysis system (GSAS); Los Alamos National Laboratory Report LAUR 86-748 (1994).Google Scholar
Toby, B.H.: EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210 (2001).Google Scholar
Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
Serras, P., Palomares, V., Alonso, J., Sharma, N., Lopez del Amo, J.M., Kubiak, P., Fdez-Gubieda, M.L., and Rojo, T.: The electrochemical Na extraction/insertion of Na3V2O2x(PO4)2F3-2x. Chem. Mater. 25, 49174925 (2013).Google Scholar
Pramudita, J.C., Godfrey, T., Whittle, T., Alam, M., Hanley, T., Brand, H.E.A., Schmid, S.A., and Sharma, N.: Sodium uptake in cell construction and subsequent in operando electrode behaviour of Prussian blue analogues, Fe[Fe(CN)6]1-x•yH2O and FeCo(CN)6. Phys. Chem. Chem. Phys. 15, 2417824187 (2014).Google Scholar