Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T16:14:43.611Z Has data issue: false hasContentIssue false

A versatile method for generating single DNA molecule patterns: Through the combination of directed capillary assembly and (micro/nano) contact printing

Published online by Cambridge University Press:  24 January 2011

Aline Cerf*
Affiliation:
CNRS, LAAS, F-31077 Toulouse, France; and Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France
Xavier Dollat
Affiliation:
CNRS, LAAS, F-31077 Toulouse, France; and Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France
Jérôme Chalmeau
Affiliation:
Physics Department, University of Minnesota, Minneapolis, Minnesota 55416; CNRS, LAAS, F-31077 Toulouse, France; and Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France
Angélique Coutable
Affiliation:
Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse F-31077, France; and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, CNRS, UMR5504, Toulouse F-31400, France
Christophe Vieu
Affiliation:
CNRS, LAAS, F-31077 Toulouse, France; and Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France
*
a)Address all correspondence to this author. e-mail: acerf@laas.fr
Get access

Abstract

One of the challenges in the development of molecular scale devices is the integration of nano-objects or molecules onto desired locations on a surface. This integration comprises their accurate positioning, their alignment, and the preservation of their functionality. Here, we proved how capillary assembly in combination with soft lithography can be used to perform DNA molecular combing to generate chips of isolated DNA strands for genetic analysis and diagnosis. The assembly of DNA molecules is achieved on a topologically micropatterned polydimethylsiloxane stamp inducing almost simultaneously the trapping and stretching of single molecules. The DNA molecules are then transferred onto aminopropyltriethoxysilane-coated surfaces. In fact, this technique offers the possibility to tightly control the experimental parameters to direct the assembly process. This technique does not induce a selection in size of the objects, therefore it can handle complex solutions of long (tens of kbp) but also shorter (a few thousands of bp) molecules directly in solution to allow the construction of future one-dimensional nanoscale building templates.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kricka, L.J.: Microchips, microarrays, biochips and nanochips: Personal laboratories for the 21st century. Clin. Chim. Acta 307, 219 (2001).Google Scholar
2.Seeman, N.C.: DNA in a material world. Nature 421, 427 (2003).Google Scholar
3.Niemeyer, C.M.: Progress in “engineering up” nanotechnology devices utilizing DNA as a construction material. Appl. Phys., A: Mater. Sci. Process. 68, 119 (1999).CrossRefGoogle Scholar
4.Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., and Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206 (2010).Google Scholar
5.Gerhold, D., Rushmore, T., and Caskey, C.T.: DNA chips: Promising toys have become powerful tools. Trends Biochem. Sci. 24, 168 (1999).CrossRefGoogle ScholarPubMed
6.Cuzin, M.: DNA chips: A new tool for genetic analysis and diagnostics. Transfus. Clin. Biol. 8, 291 (2001).CrossRefGoogle ScholarPubMed
7.Braun, E., Eichen, Y., Sivan, U., and Ben-Yoseph, G.: DNA templated self-assembly of a conductive wire connecting two electrodes. Nature 391, 775 (1998).CrossRefGoogle Scholar
8.Keren, K., Krueger, M., Gilad, R., Ben-Yoseph, G., Sivan, U., and Braun, E.: Sequence-specific molecular lithography on single DNA molecules. Science 297, 72 (2002).CrossRefGoogle ScholarPubMed
9.Deng, Z.X. and Mao, C.D.: DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett. 3, 1545 (2003).CrossRefGoogle Scholar
10.Monson, C.F. and Woolley, A.T.: DNA-templated construction of copper nanowires. Nano Lett. 3, 359 (2003).Google Scholar
11.Nguyen, K., Monteverde, M., Filoramo, A., Goux-Capes, L., Lyonnais, S., Jegou, P., Viel, P., Goffman, M., and Bourgoin, J-P.: Synthesis of thin and highly conductive DNA-based palladium nanowires. Adv. Mater. 20, 1099 (2008).Google Scholar
12.Köhler, J.M., Csáki, A., Reichert, J., Möller, R., Straube, W., and Fritzsche, W.: Selective labeling of oligonucleotide monolayers by metallic nanobeads for fast optical readout of DNA-chips. Sens. Actuators B 76, 166 (2001).CrossRefGoogle Scholar
13.Bensimon, D., Bensimon, A., and Heslot, F.: Process for aligning, adhering and stretching nucleic acid strands on a support surface by passage through a meniscus. U.S. Patent No. 5 840 862 (1998).Google Scholar
14.Bensimon, D., Simon, A.J., Croquette, V., and Bensimon, A.: Stretching DNA with a receding meniscus: Experiments and models. Phys. Rev. Lett. 74, 4754 (1995).CrossRefGoogle ScholarPubMed
15.Bensimon, A., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F., and Bensimon, D.: Alignment and sensitive detection of DNA by a moving interface. Science 265, 2096 (1994).CrossRefGoogle ScholarPubMed
16.Lyubchenko, Y.L., Gall, A.A., Shlyakhtenko, L.S., Harrington, R.E., Jacobs, B.L., Oden, S.M., and Lindsay, P.I.: Atomic force microscopy imaging of double stranded DNA and RNA. J. Biomol. Struct. Dyn. 10(3), 589 (1992).CrossRefGoogle ScholarPubMed
17.Vesenka, J., Guthold, M., Tang, C.L., Keller, D., Delaine, E., and Bustamante, C.: Substrate preparation for reliable imaging of DNA molecules with scanning force microscope. Ultramicroscopy 4244(2), 1243 (1992).Google Scholar
18.Bustamante, C., Vesenka, J., Tang, C.L., Rees, W., Gothold, M., and Keller, R.: Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31(1), 22 (1992).CrossRefGoogle ScholarPubMed
19.Thundat, T., Allison, D.P., Warmack, R.J., Brown, G.M., Jacobson, K.B., Schrick, J.J., and Ferrell, T.L.: Atomic force microscopy of DNA on mica and chemically modified mica. Scanning Microsc. 6(4), 911 (1992).Google Scholar
20.Kaji, N., Tezuka, Y., Takamura, Y., Ueda, M., Nishimoto, T., Nakanishi, H., Horiike, Y., and Baba, Y.: Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Anal. Chem. 76(1), 15 (2004).CrossRefGoogle Scholar
21.Maubach, G., Csaki, A., Seidel, R., Mertig, M., Pompe, W., Born, D., and Fritzsche, W.: Controlled positioning of one individual DNA molecule in an electrode setup based on self-assembly and microstructuring. Nanotechnology 14, 546 (2003).Google Scholar
22.Washizu, M. and Kurosawa, O.: Electrostatic manipulation of DNA in microfabricated structures. IEEE Trans. Ind. Appl. 26(6), 1165 (1990).CrossRefGoogle Scholar
23.Wolff, A., Leiterer, C., Csaki, A., and Fritzsche, W.: Dielectrophoretic manipulation of DNA in microelectrode gaps for single-molecule constructs. Front. Biosci. 13, 6834 (2008).Google Scholar
24.Petit, C.A.P. and Carbeck, J.D.: Combing of molecules in microchannels (COMMIC): A method for micropatterning and orienting molecules of DNA on a surface. Nano Lett. 3, 1141 (2003).Google Scholar
25.Opitz, J., Braun, F., Seidel, R., Pompe, W., Voit, B., and Mertig, M.: Site-specific binding and stretching of DNA molecules at UV-light patterned aminoterpolymer films. Nanotechnology 15, 717 (2004).Google Scholar
26.Gad, M., Sugiyama, S., and Ohtani, T.: Method for patterning stretched DNA molecules on mica surfaces by soft lithography. J. Biomol. Struct. Dyn. 2, 387 (2003).CrossRefGoogle Scholar
27.Björk, P., Holmström, S., and Inganäs, O.: Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer. Small 89, 1068 (2006).CrossRefGoogle Scholar
28.Nakao, H., Shiigi, H., Yamamoto, Y., Tokonami, S., Nagaoka, T., Sugiyama, S., and Ohtani, T.: Highly ordered assemblies of Au nanoparticles organized on DNA. Nano Lett. 3, 1391 (2003).Google Scholar
29.Nakao, H., Gad, M., Sugiyama, S., Otobe, K., and Ohtani, T.: Transfer-printing of highly aligned DNA nanowires. JACS 125, 7162 (2003).CrossRefGoogle ScholarPubMed
30.Guan, J. and Lee, L.J.: Generating highly ordered DNA nanostrand arrays. PNAS. 102, 18321 (2005).CrossRefGoogle ScholarPubMed
31.Malaquin, L., Kraus, T., Schmid, H., Delamarche, E., and Wolf, H.: Controlled particle placement through convective and capillary assembly. Langmuir 23, 11513 (2007).Google Scholar
32.Xia, Y. and Whitesides, G.M.: Soft lithography. Angew. Chem. Int. Ed. 37, 550 (1998).3.0.CO;2-G>CrossRefGoogle ScholarPubMed
33.Kraus, T., Malaquin, L., Schmid, H., Riess, W., Spencer, N.D., and Wolf, H.: Nanoparticle printing with single particle resolution. Nat. Nanotechnol. 2, 570 (2007).CrossRefGoogle ScholarPubMed
34.Smith, D.E., Perkins, T.T., and Chu, S.: Dynamical scaling of DNA diffusion coefficients. Macromolecules 29, 1372 (1996).CrossRefGoogle Scholar
35.Perkins, T., Smith, D., Larson, R., and Chu, S.: Stretching of a single tethered polymer in a uniform flow. Science 268, 83 (1995).Google Scholar
36.Tegenfeldt, J.O., Prinz, C., Cao, H., Chou, S., Reisner, W.W., Riehn, R., Wang, Y.M., Cox, E.C., Sturm, J.C., Silberzan, P., and Austin, R.H.: The dynamics of genomic-length DNA molecules in 100 nm channels. PNAS. 101, 10979 (2004).CrossRefGoogle ScholarPubMed
37.Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, G., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V., Kroger, N., Lau, W.W.Y., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F.P., and Rokhsar, D.S.: The genome of the diatom Thalassiosira Pseudonana: Ecology, evolution, and metabolism. Science 306, 79 (2004).CrossRefGoogle ScholarPubMed
38.Dimalanta, E.T., Lim, A., Runnheim, R., Lamers, C., Churas, C., Forrest, D.K., de Pablo, J.J., Graham, M.D., Coppersmith, S.N., Goldstein, S., and Schwartz, D.C.: A microfluidic system for large DNA molecule arrays. Anal. Chem. 76, 5293 (2004).Google Scholar